トピックス

分子動力学シミュレーションとNMR法で迫る べん毛モーターの回転制御機構 宮ノ入洋平¹², 土方敦司³, 本間道夫²⁴

¹大阪大学蛋白質研究所 ²名古屋大学大学院理学研究科附属構造生物学研究センター ³長浜バイオ大学バイオサイエンス学部

4名古屋大学大学院理学研究科生命理学専攻

1. はじめに

生体高分子の機能を詳細に解明するためには、その 立体構造を動的な観点から理解することが必要とな る. 特に, 蛋白質が有する"揺らぎ"は, 生命機能の 発現と密接に関連することが示唆されており、盛ん に研究されている. 蛋白質の動態構造を原子分解能で 明らかにする手法は、クライオ電子顕微鏡、X線結晶 構造解析等が挙げられるが、その中でも核磁気共鳴 (nuclear magnetic resonances:NMR) 法は, 幅広い時間域 の動態を捉えることができるユニークな手法である. 近年では、立体整列同位体標識 (stereo array isotope labeling: SAIL)法をはじめ、高度な安定同位体標識技 術が確立され,40 kDa 以上の高分子量蛋白質におい ても精密な立体構造解析が可能となった.また、アミ ノ酸残基側鎖が関与する交換運動を定量的に捉える手 法も開発されている¹⁾.現在, 1.2 GHz 超高磁場 NMR 装置の稼働が見据えられており、今後、様々な蛋白質 の構造動態研究が展開されることが予想される.特 に,分子間相互作用に伴う動態変化は,蛋白質の分子 認識機構の解明のみならず、創薬研究においても、新 たな知見を与えることが期待される. このような背景 から、実験により得られた構造動態を、精密かつ妥当 性の高い描像として表現することが重要となる.近 年, 分子動力学 (molecular dynamics: MD) シミュレー ションを用いた動態モデルの解析と NMR 法の活用に より,様々な生命現象が明らかにされている²⁾.本稿 では、細菌の運動装置であるべん毛の回転メカニズム の解明に向けた NMR 法と MD シミュレーションを用 いた研究について紹介する.

2. 細菌のべん毛

大腸菌やサルモネラ菌などの運動性細菌は、べん毛 と呼ばれる独自の運動器官を用いて、自身の運動を精 密に制御している. べん毛は体長の数倍にも及ぶらせ ん状の繊維部分と、細胞表面に埋め込まれたモーター 部分で構成されている. モーター部分は, 50 nm 程度 の小さな器官であるが、秒速 300 回転以上の速さで回 転し、かつ、回転方向を瞬時に変換することができ る,極めて高い性能を有している.べん毛モーターの 回転制御機構の解明は、細菌の生命活動や病原性細菌 による感染経路の解明といった、生物学や医学的な観 点のみならず、生体ナノマシンへの応用といった工学 的側面からも注目されている. べん毛モーターは,約 20種の蛋白質によって構成され、各々が動的な相互 作用をすることで、上述のような優れたモーター特性 を生み出している.特に,回転力を生み出すモーター の主要部分は、固定子や回転子の役割を担う蛋白質複 合体が集合した超分子構造体である. この超分子モー ターを介した H⁺ や Na⁺ の流入が,細胞内外での電気 化学的ポテンシャル差を力学エネルギーに変換し、ベ ん毛モーターを回転することになる³⁾. これまで多く の研究者が、様々な細菌を対象に、べん毛モーター全 体の構造解析や各種構成因子の機能解析を進めてき た. 我々は、海洋性ビブリオ菌のべん毛モーターを対 象に、回転子リング構造の一つであるCリングに注 目してきた. Cリングは FliG, FliM および FliN 蛋白 質によって構成され、互いが相互作用することで、回 転運動を制御することが示唆されてきた.特に,FliG は FliM や固定子との相互作用を介して、回転方向の 切り替え(スイッチング)を制御していると考えられ

Dynamic Structure of C-terminal Domain of FliG Revealed by NMR and MD Simulation Analysis Yohei MIYANOIRI^{1,2}, Atsushi HIJIKATA³ and Michio HOMMA^{2,4}

¹Institute for Protein Research, Osaka University

²Structural Biology Research Center, Graduate School of Science, Nagoya University

³Department of Bioscience, Nagahama Institute of Bio-Science and Technology

⁴Division of Biological Science, Graduate School of Science, Nagoya University

ている. そこで, FliG の構造動態を解析し, スイッチ ング機構の解明に迫った⁴.

3. FliGのNMR解析

FliG は N 末側より,N 末端ドメイン,中間ドメイ ン,C 末端ドメインから構成されている.これまでの 研究から,各ドメイン間の相互作用が回転方向の変換 制御やトルク発生に関与していることが示唆されてい るが,C 末端ドメイン (FliGc)は固定子蛋白質との 相互作用など,特に重要な役割を担っていると考えら れている.実際,FliGc 中の一部アミノ酸を置換する と,回転方向に異常を示す表現型が確認された⁹.野 生型では,べん毛モーターの回転方向を,時計回り (CW)と反時計回り (CCW)に変換することが可能 であるが,282番目のアラニン残基をスレオニン残基 に置換したA282T変異体では,回転方向が CW に固 定されてしまうことが明らかとなった.そこで, FliGc および FliGcA282T について NMR 測定を行い, 両者の動態構造を比較した.

¹³C, ¹⁵Nで安定同位体標識した FliGc および FliGc A282T 変異体を調製し, NMR 信号の帰属を行った. 各原子の化学シフトの解析から, FliGc の 253 番目の メチオニン残基 (M253) からC末端のLeu 残基 (L351) までの領域に, 6本のαヘリックスが存在することが 分かった (図 1;α1:F256-V260, α2:D264-R272, α3: Q276-L283, α4:D288-K296, α5:K300-E311, α6: V318-D337). これは, 他の細菌由来のFliG 結晶構造⁶⁾ の結果とよく一致していた.一方,A282T変異体の NMR スペクトルは、野生型と比較して大きく変化し ていることが分かった. 両者の¹H-¹⁵N HSQC スペク トルを比較すると、アミノ酸変異が施された A282 付 近 (α3のC末端) だけでなく, α1, α5 および α6 に おいても NMR 信号の変化が観測された(図1).特 に α1 に由来する NMR 信号は, A282T 変異体では感 度の大幅な低下,線幅の広幅化が顕著となり,帰属す ることができなかった. さらに、両者についてアミド 基¹⁵N窒素に対して、横緩和速度定数の解析を行っ た. その結果,野生型と比較して A282T 変異体では, 変異箇所に対応する α3-α4 領域で、ミリ秒オーダーの 遅い交換運動が存在することが示唆された. これらの 結果から、A282T変異に伴い、特に a1 領域を中心に FliGcに構造変化が起こり、 α3-α4 領域で、新たに遅い 揺らぎが生じることが示唆された.

4. FliG の MD シミュレーション解析

NMR 解析より, FliGc と FliGcA282T 変異体の間で, 構造動態に違いがみられることが示唆された. そこ で,両者についての MD シミュレーションを行い, 動的構造の違いについて解析した.

ビブリオ菌 FliG の立体構造はまだ実験的に決定されていないため,まず *T. maritima* FliG の結晶構造⁶⁰を テンプレートとして,ビブリオ菌 FliG の G214-L351 領域を対象に MODELLER を用いて立体構造モデルを 構築した.両者のアミノ酸配列は,独自の手法である

図1

FliGc および FliGcA282T の NMR 解析. (a) FliGc [黒], FliGcA282T [赤] の ¹H-¹⁵N HSQC スペクトルの重ね合わせ図. 変異に伴い化学シフト の変化 [矢印] やシグナルの消失 [破線部] がみられる. (b) A282T 変異に伴い大きな化学シフトした領域を青色, シグナルが消失した領 域を赤色で構造モデル上にマップした.

ALAdeGAP を用いてアラインメントした⁷. 得られた モデル構造は、テンプレート構造や NMR スペクトル の解析でみられたように、M253-L351の領域は6つの αヘリックス構造をとり、またG214-L252の領域は、 ARMcと呼ばれる armadillo 様構造をとる (図2). FliGcA282T 変異体の構造モデルについては, FliGcの 構造モデルをもとに構築した. FliGcおよび FliGcA282Tの立体構造モデルをGROMACSに供 し、MDシミュレーション(各500ナノ秒×3回)を 行った結果,両者間で興味深い差異が見いだされた. まず, MDトラジェクトリ中の FliGc 構造のクラス ター解析をすると、少なくとも3つのコンフォメー ションが存在していることが明らかとなった.一方, FliGcA282Tにおいては、主に単一のコンフォメー ションをとっており、構造変化が制限されていること が示唆された(図2).両者の構造分布の違いが、立 体構造のどの領域に起因するかについてシミュレー ションデータを解析したところ, α1 領域と α4 領域の 相対配置が異なっていることが明らかとなった. FliGc においては、両者間の距離が 9.5-10.4 Å である のに対し, FliGcA282T はそれよりも大きく約11Åに ピークを持っていた. この差異は, α1に存在する F256 と α3 末端の A282 との間にある疎水性相互作用 が、T282への置換によって立体障害を受けることに 起因すると考えられた. このMDの解析結果は, NMR 解析においてみられた al 領域の構造変化と対 応していると考えられる.先行研究において,F256 が存在する"MFXF モチーフ"はFliGcの相対配置を 制御することが示唆されており⁸⁾,今回の解析結果よ り得られた相互作用をサポートするものと考えられ る. さらに, FliGcA282T のシミュレーションにおい ては、アミノ酸変異箇所である 282 番目のスレオニン 残基(T282)の側鎖OH基が,近接するα3に存在す る V278 の主鎖カルボニル基と新たに水素結合を形成 していた. この水素結合の形成が, α3-α4 領域の構造 動態に影響を与えていると考えられる. 先述の NMR

図2

FliGc および FliGcA282T のシミュレーション解析. (a) FliGc ではサブマイクロ秒オーダーで3つのコンフォメーションが存在しており, MFXF-α1 領域(赤色) および ARM 領域(茶色:一部表示)が大きく変動している. (b) FliGcA282T では,主に単一のコンフォメーションを とる. F256 と T282 の側鎖が立体障害となるため,コンフォメーションが限定されることが示唆された.

解析の結果でも、α3-α4の領域は FliGc と FliGcA282T とを比較した際に、化学シフト変化がみられていた. 同時に、FliGcA282Tにおいては、同領域で、ミリ秒 オーダーの遅い運動が存在することが示唆されてお り, MD シミュレーションの結果は、これらの実験結 果と矛盾しないと考えられる.

以上の解析より, FliGc においては, MFXF モチー フを含むα1領域を蝶番として、αヘリックス間の分 子内相互作用が回転方向のスイッチングに関与してい ることが示唆された4).

5. おわりに

NMR 法による主鎖アミド基の化学シフト変化なら びに横緩和速度定数の解析と MD シミュレーション を活用することで、FliGcの構造動態解明に迫った. FliGc では a1 領域を介した分子内相互作用により構造 変換が引き起こされており、このことが回転方向のス イッチングに寄与していると考えられた. 今後は, FliG と FliM の間の相互作用や C リング構造を対象と した NMR 解析ならびに MD シミュレーションを進 め,モーター構成蛋白質の局所的な構造動態が,べん 毛超分子モーターならびに細菌の運動を如何にして制 御しているのか明らかにしていきたい.

文 献

- 1) Miyanoiri, Y. et al. (2018) Mod. Magn. Res. 2, 1-18. DOI: 10.1007/978-3-319-28275-6_48-1.
- 2) Nygaard, R. et al. (2013) Cell 152, 532-542. DOI: 10.1016/ j.cell.2013.01.008.
- 3) Li, N. et al. (2011) Genes Cells 16, 985-999. DOI: 10.1111/j.1365-2443.2011.01545.x.
- 4) Miyanoiri, Y. et al. (2017) Structure 25, 1540-1548.e3. DOI: 10.1016/j.str.2017.08.010.
- 5) Kojima, S. et al. (2011) J. Mol. Biol. 414, 62-74. DOI: 10.1016/ j.jmb.2011.09.0919.

- 6) Brown, P. N. et al. (2002) EMBO J. 21, 3225-3234. DOI: 10.1093/ emboj/cdf332.
- 7) Hijikata, A. et al. (2011) Proteins 79, 1868-1877. DOI: 10.1002/ prot.23011.
- 8) Lee, L. K. et al. (2010) Nature 466, 996-1000. DOI: 10.1038/ nature09300.

宮ノ入洋平(みやのいり ようへい) 大阪大学蛋白質研究所准教授 2004年日本学術振興会特別研究員, 05年横浜国 立大学大学院環境情報学府修了(博士(工学)), 06年香港科技大学生化学科博士研究員, 08年名 古屋大学大学院理学研究科博士研究員,11年同・ 特任助教を経て、17年より現職. 研究内容:NMR 法を用いた蛋白質の動態解析

連絡先:〒565-0871 大阪府吹田市山田丘 3-2

E-mail: y-miyanoiri@protein.osaka-u.ac.jp

宮ノ入洋平

土方敦司(ひじかた あつし) 長浜バイオ大学バイオサイエンス学部特任講師 2002年日本学術振興会特別研究員, 04年名古屋 大学大学院理学研究科単位取得退学(13年博士 (理学)),04年理化学研究所リサーチアソシエイ トを経て、12年11月より現職.

研究内容:構造バイオインフォマティクスを用い たゲノム変異解析

連絡先:〒526-0829 滋賀県長浜市田村町 1266 E-mail: a_hijikata@nagahama-i-bio.ac.jp

本間道夫(ほんま みちお) 名古屋大学大学院理学研究科教授

1985年東京大学大学院理学研究科博士課程修了. 理学博士. 85年米国エール大学分子生物物理生 化学科博士研究員, 88 年名古屋大学付属病態制 御研究施設講師,92 年名古屋大学大学院理学研 究科助教授,97年より現職.

本間道夫

研究内容:細菌べん毛超分子回転モーターのエネ ルギー変換機構の解明 連絡先:〒464-8602 愛知県名古屋市千種区不老町 E-mail: g44416a@cc.nagoya-u.ac.jp URL: http://133.6.129.176/~bunshi4/fourth.html

トピックス

254