

















| NO. | 光投原                    | 光授マリス               | screening / 法                                 | 选加well级 |
|-----|------------------------|---------------------|-----------------------------------------------|---------|
| 1   | BV+精製抗原                | gp64 Tg/<br>BALB/c系 | 1.精製抗原ELISA<br>2.BV ELISA                     | 5       |
| 2   | 精製抗原                   | MRL/lpr             | 1.精製抗原ELISA<br>2.BV ELISA                     | 26      |
| 3   | liposome<br>アンタゴニスト添加  | MRL/lpr             | 1.liposome ELISA<br>2.精製抗原ELISA<br>3.BV ELISA | >80     |
| 4   | liposome<br>アンタゴニスト添加  | BALB/c              | 1.liposome ELISA<br>2.精製抗原ELISA<br>3.BV ELISA | >80     |
| 5   | liposome<br>アンタゴニスト無添加 | MRL/lpr             | 1.liposome ELISA<br>2.精製抗原ELISA<br>3.BV ELISA | >80     |
| 6   | liposome               | BALB/c              | 1.liposome ELISA                              | >80     |























































































## これまでの研究成果/今後の展開

## • 研究成果/進捗状況

- 良好な抗原用/結晶化用のほ乳類トランスポーターの生産
- リポソームを用いた膜蛋白質に適した免疫法の確立
- リポソームELISA法、Biacore法等の構造認識抗体スクリーニング法の確立
- Fab抗体ファージライブラリーを用いたリコンビナント抗体の作成法の確立
- 7種類の膜蛋白質に対する構造認識抗体を作成
- ターゲット/抗体複合体の調製、結晶化

## 今後の展開

- 複合体の構造解析(抗体構造を使った分子置換)
- 他のターゲットに対する抗体の作成
- 活性測定等をスクリーニングに組み込み、抗体医薬等に使用可能な 機能性抗体を選択する技術を確立