トップ構成員>寺島浩行

寺島浩行(Hiroyuki Terashima)

研究課題 III型分泌装置のタンパク質膜透過メカニズムの解明
細菌べん毛の回転メカニズムの解明   
職名 助教
寺島浩行助教
生年月日 1981年6月
学位 博士(理学) 名古屋大学
専門分野 生化学
生物物理学
細菌学
学歴 2008年4月 日本学術振興会 特別研究員DC2
2009年4月 日本学術振興会 特別研究員PD
2010年4月 名古屋大学大学院理学研究科(生体膜機能グループ)博士研究員
2010年6月 Cornell University, Weill Cornell Medical College,
       Postdoctral Associate (Dr. Accardi's lab)
2012年6月 大阪大学大学院理学研究科(高分子構造科学研究室) 博士研究員
2016年4月 大阪大学大学院理学研究科(高分子構造科学研究室) 特任助教
2017年4月 名古屋大学大学院理学研究科(生体膜機能グループ)助教
所属学会 日本生物物理学会
日本生化学会
日本細菌学会
受賞歴 平成20年度生物物理学会中部支部講演会優秀発表賞 (2009)
第12回21世紀大腸菌研究会優秀発表賞 (2015)
第12回日本生物物理学会若手奨励賞(2016)
2019年日本生化学会奨励賞(2019)
連絡先 terashima.hiroyukih.mbox.nagoya-u.ac.jp

原著論文 

全て査読有り
(*: equal contribution, †: corresponding author)

  • In vitro autonomous construction of the flagellar axial structure in inverted membrane vesicles.
    Terashima H, Tatsumi C, Kawamoto A, Namba K, Minamino T and Imada K.
    Biomolecules. 10(1), pii: E126. (2020) PubMed
  • In situ structure of the Vibrio polar flagellum reveals distinct outer membrane complex and its specific interaction with the stator.
    Zhu S, Nishikino T, Takekawa N, Terashima H, Kojima S, Imada K, Homma M and Liu J.
    Journal of Bacteriology. 202(4). e00592-19. (2020)PubMed
  • Essential ion binding residues for Na+ flow in stator complex of the Vibrio flagellar motor.
    Onoue Y, Iwaki M, Shinobu A, Nishihara Y, Iwatsuki H, Terashima H, Kitao A, Kandori H and Homma M.
    Scientific Reports. 9(1): 11216. (2019)PubMed
  • Structure of Vibrio FliL, a new stomatin-like protein that assists the bacterial flagellar motor function.
    Takekawa N, Isumi M, Terashima H, Zhu S, Nishino Y, Sakuma M, Kojima S, Homma M, and Imada K*.
    mBio. 10(2): e00292-19. (2019)PubMed
  • In vitro reconstitution of functional type III protein export and insights into flagellar assembly.
    Terashima H, Kawamoto A, Tatsumi C, Namba K, Minamino T, Imada K.
    mBio, 9(3): e00988-18 (2018) PubMed
  • Nucleotide binding triggers a conformational change of the CBS module of the magnesium transporter CNNM2 from a twisted towards a flat structure.
    Corral-Rodri´guez MA, Stuiver M, Abascal-Palacios G, Diercks T, Oyenarte I, Ereno-Orbea J, Iba´nez De Opakua A, Blanco FJ, Encinar JA, Spiwok V, Terashima H, Accardi A, Mu¨ller D and Martinez-Cruz LA.
    Biochemical Journal. 464(1):23-34. (2014) PubMed
  • Purified TMEM16A is sufficient to form Ca2+ activated Cl- channels.
    Terashima H*, Picollo A* and Accardi A.
    Proc. Natl. Acad. Sci. USA. 110(48): 19354-19359. (2013) PubMed
  • Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel.
    Malvezzi M, Chalat MN, Janjusevic R, Picollo A, Terashima H, Menon AK and Accardi A.
    Nature Communications. 4:2367. (2013) PubMed
  • Mutation in the a-subunit of F1FO-ATPase causes an increased motility phenotype through the sodium-driven flagella of Vibrio.
    Terashima H*, Terauchi T*, Ihara K, Nishioka N, Kojima S and Homma M.
    Journal of Biochemistry. 154(2):177-184. (2013) PubMed
  • Insight into the assembly mechanism in the supramolecular rings of the sodium-driven Vibrio flagellar motor from the structure of FlgT.
    Terashima H*, Li N*, Sakuma M, Koike M, Kojima S, Homma M and Imada K.
    Proc. Natl. Acad. Sci. USA. 110(15): 6133−6138. (2013) PubMed
  • A conserved residue, PomB-F22, in the transmembrane segment of the flagellar stator complex, has a critical role in conducting ions and generating torque.
    Terauchi T*, Terashima H*, Kojima S and Homma M.
    Microbiology. 157(Pt 8): 2422-2432. (2011) PubMed
  • The flagellar basal-body associated protein, FlgT, essential for a novel ring structure in sodium-driven Vibrio motor.
    Terashima H, Koike M, Kojima S and Homma M.
    Journal of Bacteriology. 192(21): 5609-5615. (2010) PubMed
  • Functional transfer of an essential aspartate for the ion-binding site in the stator proteins of the bacterial flagellar motor.
    Terashima H, Kojima S, Homma M.
    Journal of Molecular Biology. 397(3): 689-696. (2010) PubMed
  • Isolation of basal bodies with C-ring components from the Na+-driven flagellar motor of Vibrio alginolyticus.
    Koike M, Terashima H, Kojima S and Homma M.
    Journal of Bacteriology. 192(1): 375-378. (2010) PubMed
  • Zernike phase contrast cryo-electron tomography of sodium-driven flagellar hook-basal bodies from Vibrio alginolyticus.
    Hosogi N, Shigematsu H, Terashima H, Homma M and Nagayama K.
    Journal of Structural Biology. 173: 67-76. (2011) PubMed
  • Comparative study of the ion flux pathway in stator units of proton- and sodium-driven flagellar motors.
    Sudo Y, Terashima H, Abe-Yoshizumi R, Kojima S and Homma M.
    BIOPHYSICS. 5: 45-52. (2009) PubMed
  • Cell-free synthesis of the torque-generating membrane proteins, PomA and PomB, of the Na+-driven flagellar motor in Vibrio alginolyticus.
    Terashima H, Abe-Yoshizumi R., Kojima S and Homma M.
    Journal of Biochemistry. 144(5): 635-642. (2008) PubMed
  • Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY.
    Kojima S, Shinohara A, Terashima H, Yakushi T, Sakuma M, Homma M, Namba K and Imada K.
    Proc. Natl. Acad. Sci. USA. 105(22): 7696-7701. (2008) PubMed
  • Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus.
    Kusumoto A, Shinohara A, Terashima H, Kojima S, Yakushi T and Homma M.
    Microbiology. 154(Pt 5): 1390-1399. (2008) PubMed
  • The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+-driven flagella and required for stator formation.
    Terashima H, Fukuoka H, Yakushi T, Kojima S and Homma M.
    Molecular Microbiology. 62(4): 1170-1180. (2006) PubMed
  • Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus.
    Kusumoto A, Kamisaka K, Yakushi T, Terashima H, Shinohara A and Homma M.
    Journal of Biochemistry. 139(1): 113-121. (2006) PubMed


総説・解説

  • Novel insight into an energy transduction mechanism of the bacterial flagellar type III protein export.
    Terashima H and Imada K.
    Biophysics and Physicobiology, 15: 173-178. (2018) Website
  • Salmonella Flagellum
    Minamino T, Morimoto YV, Kawamoto A, Terashima H and Imada K. 
    IntechOpen, : 3-18. (2018) Website
  • Structural differences in the bacterial flagellar motor among bacterial species.
    Terashima H, Kawamoto A, Morimoto YV, Imada K and Minamino T. 
    Biophysics and Physicobiology, 14: 191-198. (2017) PubMed
  • ビブリオ菌べん毛モーターの超高速回転を支える超分子リング構造形成のしくみ
    寺島浩行、本間道夫、今田勝巳 
    生物物理 54巻1号:19-21. (2014) (表紙)
  • Flagellar Motility in Bacteria: Structure and Function of Flagellar Motor.
    Terashima H, Kojima S and Homma M.
    International review of cell and molecular biology. 270: 39-85. (2008) PubMed
Copyright©2009-2017 Group of Biomembrane Functions. All rights reserved.