

極に1本だけべん毛を形成する: FIhFとFIhGによる海洋性ビブリオの 極べん毛生合成制御機構

小嶋誠司 名古屋大学 大学院理学研究科 生命理学専攻 May 21, 2020

Seiji Kojima (Nagoya University) photo in 2019

小嶋誠司(こじませいじ)

名古屋市生まれ、今年50歳(1児の父) 小学校6年まで大阪府交野市 小学校6年で奈良県生駒市へ引っ越し (実家は奈良先端大のすぐ近く)

生駒市立上中学校・県立奈良高校卒 (バレーボールばかりやっていました)

駿台京都校で1年修行 この時"物事の理"を知る面白さに気づく

名古屋大学理学部に入学(1990)

Seiji@junior high (15 years old)

Seiji@high sch. (18 years old)

short hair!

ピアノ同好会にも入っていました

1993年の定期演奏会(中区役所ホール)

1991年にべん毛に出会う(今栄先生のラボを訪問)

学位を取って留学(University of Utah) 1999-2004

阪大を経て200、目は 名大・本間研・助手に

大学院の時期:

出会いを大切に。セーフティネットの 意味でも交流は重要。

研究室<生命理学<名大<国内<国外 同窓会(理学・生命理学)

理学研究科での研究:

自然の真実を垣間見る 基礎研究は芸術・文化 自然の論理の美しさ

自然の輝きを感じる一瞬の感動 (小嶋はこれまでに4回感動のシーンあり)

History of our lab

Fumio Oosawa

"Father of Biophysics"

Yasuo Imae

Energetics of the flagellar motor

discovery of Proton-driven motor (1977) discovery of sodium-driven motor (1981)

Michio Homma

Molecular biology and biochemistry Identification of stator genes (1997) Stator behaviors (2005, 2009)

べん毛の本数と形成位置

生育環境に応じてべん毛の形成位置と本数は厳密に決まっている 生体分子の適量・適所配置機構

べん毛の本数と形成位置

どのようにして極に1本だけべん毛を形成するのか?

べん毛本数が異常になった変異株の単離

Kusumoto et al (2006)

運動能が低下した変異株

運動能の低下した変異株に多毛のものがあった

1 µm

極べん毛本数を制御する因子:FlhFとFlhG

KK148株の変異部位は *flhG* にマップされた (Q109 amber)

FIhF

🦄 GTPase, GTP依存で二量体形成 ≪ 大腸菌のFtsY (SRP receptor)に相同 💐 べん毛の形成位置を決定する 次失すると無べん毛になる

FlhG (FleN)

▲ ATPase, ATP依存で二量体形成 ≪ 大腸菌のMinDに相同

≪ べん毛遺伝子群発現を抑制する

🕅 欠失すると多べん毛になる

Kusumoto et al. (2008)

FINF

a positive regulator that determines flagellar positioning

FIhFは細胞の極に局在しべん毛形成を促進する

FIhFは極べん毛基部に局在する

Kusumoto et al (2008)

FlhF-GFP

Host: *E. coli* Δ(*flhD-A*) べん毛遺伝子を発現しない株

> FlhFは大腸菌内でも極に局在する intrinsicな極局在能を持つ

FIhGはFIhFの極局在を負に制御する

FIhF極局在はFIhGがないと強まる

FIhGとFIhFは結合する

FIhGはFIhFに関係なく極局在する

FlhG が極の FlhF 量を制御することで べん毛本数が1本になる

(Kusumoto et al, 2008)

FIhFはシグナル認識粒子(SRP)に相同性を示す

FIhFのGTPase motifと機能の関係

Bacillus subtilis FlhF dimer (2PX3)

Kusumoto et al, 2009, Kondo et al, 2017

FIhFタンパク質はGTP/GDP存在下で安定

FIhFのGTPase活性

FIhFのGTPase活性

FIhFはFIhG存在下でGTPase活性を示す

FIhFのGTPase活性

FIhFはFIhG存在下でGTPase活性を示す GTPを加水分解できなくても、結合できればFIhFは機能する

Kondo et al (2018)

FIhFはGTP存在下で二量体を形成する

野生型FIhFはGTP存在下で二量体、 GDP存在下で単量体であることが示唆された

FIhFはべん毛形成をどのステップで促進するか?

FliFの極への局在にはFlhFが必要である

FlhF co-expression

FliF-GFP

vector

Host: *rpoN*欠損株 (べん毛タンパク質を発現しない)

FliFはFlhFに依存して極局在する

極局在できないFlhFは FliFを極に局在できない

FliFの極局在を高める? MS ringの極での構築を促進? FliF-GFP

GFP-FliF

FlhF (T306A) co-expression

FliF-GFP

GFP-FliF

Terashima et al, submitted; Inoue et al, unpublished

FIhFのはたらきのまとめ

FlhFはGTPに依存して活性型二量体になり、極へ移行する FliFの極局在を促進してべん毛形成を正に制御

FING

the negative regulator for polar flagellation

極べん毛本数を制御する因子:FlhFとFlhG

KK148株の変異部位は *flhG* にマップされた (Q109 amber)

🦄 GTPase, GTP依存で二量体形成 ≪ 大腸菌のFtsY (SRP receptor)に相同 💐 べん毛の形成位置を決定する ∞ 欠失すると無べん毛になる

FlhG (FleN)

▲ ATPase, ATP依存で二量体形成 ≪ 大腸菌のMinDに相同 🔌 べん毛遺伝子群発現を抑制する 🕅 欠失すると多べん毛になる

Kusumoto et al. (2008)

FlhGは極べん毛遺伝子群の発現を負に制御する

²² HubP: ビブリオ菌の極で足場として働く膜タンパク質

HubPは様々なタンパク質を極局在させる "ランドマーク"として働く

(Yamaichi et al., 2012)

Takekawa et al (2016)

海洋性ビブリオ菌でも HubPは極に局在していた

コレラ菌では、FlhGは HubPに依存して極局在している

海洋性ビブリオ菌では?

HubPもべん毛本数制御に関与する

Takekawa et al (2016)

HubPがないとFIhGは極局在できない

wild type

23

∆hubP

HubPがないと極に多べん毛を形成

ΔhubP株でFlhGは野生型レベルで発現

FlhGは極でFlhFを阻害しているのでは?

FlhGはMinD/ParA-typeのATPaseに分類される

ATPaseはMinDの役割に重要である

K31, K36 (K11, K16): ATPとの結合 D60 (D40): 加水分解を触媒 D171 (D152): 活性の制御 Ec MinD (3Q9L) Gt FlhG (4RZ3) 10^{152} D40 10^{171} D60 10^{171} D70 10^{171} D70

FlhGの機能においてATPaseモチーフが果たす役割とは?

FIhGのATPase motifと機能の関係

WT

	FlhG at pole	cells with no flagella
WT	++	91%
K31A		18%
K36Q		18%
D60A	+	88%
D171A	+++	96%
K31A/D171A		18%
D60A/D171A	+++	90%

(Ono et al., 2015)

K31, K36 : ATPとの結合 D60 : 触媒部位 D171 : 活性制御

野生型FlhG 極局在する 過剰発現により無べん毛になる ATPase活性は低い

30

FIhGのATPase motifと機能の関係

FlhG-GFP

K31A

	FlhG at pole	cells with no flagella
WT	++	91%
K31A		18%
K36Q		18%
D60A	+	88%
D171A	+++	96%
K31A/D171A		18%
D60A/D171A	+++	90%

(Ono et al., 2015)

K31, K36 : ATPとの結合 D60 : 触媒部位 D171 : 活性制御

ATP結合部位の変異体 極局在できない 過剰発現しても多べん毛 ATPase活性はない

Pi release (uM)

0

Butter

D60A

N

431A DITTA DITTA DITTA

FIhGのATPase motifと機能の関係

		WT				FlhG at pole	cells with no flagella
FlhG-GFP		V	WT		91%		
		KB	K31A		18%		
	K31A K36Q D171A	KB	K36Q		18%		
		De	60A	+	88%		
		D1	71A	+++	96%		
		K31A/	′D171A		18%		
		D60A/	′D171A	+++	90%		
30 _[(Ono <i>et al.,</i> 2
25	FIhG ATP	ase	T	(
20			1		K31, K D60	36:ATf : 触妓	Pとの結合 部位
15					D171	:活性	制御
10							
5				ATP	ase活性制	御部位の	変里

o *et al.,* 2015)

強い極局在 過剰発現すると無べん毛 高いATPase活性

FIhGのATPase motifと機能の関係

	WT			FlhG at pole	cells with nc flagella)
FlhG-GFP K31A K36Q D171A		WT	++	91%		
			K31A		18%	
		D171A	K36Q		18%	
			D60A	+	88%	
			D171A	+++	96%	
		K31A/D171A		18%		
		D60A/D171A	+++	90%		
	FlhG ATPase				(Ono <i>et al.,</i> 2	2015)
			K31, K36: ATPとの結合 D60 : 触媒部位 D171 : 活性制御			
	5 0 Buffer WT D60A K31A D1T1A D1T1A K31AD D60A	5177A	D60A/D171A ATPase活性 ATPに結合し極	変異体 はないが、 で阻害権	高いFlhG機能 <mark>幾能を発現す</mark>	3)

Ultracentrifugation to remove aggregates

Size exclusion column

20 mM Tris pH8.0 300 mM NaCl 10% (w/v) glycerol 5 mM MgCl₂ 65 mM Imidazole 0.5 mM ATP/ADP

Immunoblot to confirm FlhG

FIhGはATP存在下でも単量体である

Kojima et al, 2020

Purified FlhG (34.4 kDa)

Kojima et al, 2020

ATPase活性を失った変異体もATP依存的な 二量体は形成していない

ATPase活性変異体のゲル濾過クロマトグラフィー

Kojima et al, 2020

ATPase活性の高い変異体は構造が変化している 二量体は形成していない

MinDとは異なり、単量体で機能する可能性がある

FIhFとFIhGによる極べん毛形成制御モデル

FlhFによるべん毛形成促進はGTP結合型の活性型二量体が担うのか? FlhGは単量体でFlhF阻害活性を持つのか?

Acknowledgement

Financial supports

新学術領域(少数性生物学・運動マシナリー)、基盤研究B