The Goshima Lab Home Page
top
五島剛太
Research projects
Publications
People
Japanese English
Research Projects
 We are interested in intracellular dynamics, particularly those regulated by microtubules. We have adopted multiple methodologies and model systems, such as high-resolution live cell microscopy in animal and plant cells, in vitro reconstitution, and computer simulation. Currently we are running 4 projects.
 Mitotic spindle formation in animal cells
  1. Goshima, G., Wollman, R., Goodwin, S.S., Zhang, N., Scholey, J.M., Vale, R.D., and Stuurman, N. (2007). Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316, 417-421. >>Link
  2. Goshima, G., Mayer, M., Zhang, N., Stuurman, N., and Vale, R.D. (2008). Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J Cell Biol 181, 421-429. >>Link
  3. Uehara, R., Nozawa, R.S., Tomioka, A., Petry, S., Vale, R.D., Obuse, C., and Goshima, G. (2009). The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells. Proc Natl Acad Sci U S A 106, 6998-7003. >>Link
  4. Uehara, R., and Goshima, G. (2010). Functional central spindle assembly requires de novo microtubule generation in the interchromosomal region during anaphase. J Cell Biol 191, 259-267. >>Link
  5. Goshima, G. (2011). Identification of a TPX2-like microtubule-associated protein in Drosophila. PLoS One 6, e28120. >>Link
  6. Kamasaki, T., O'Toole, E., Kita, S., Osumi, M., Usukura, J., McIntosh, J.R., and Goshima, G. (2013). Augmin-dependent microtubule nucleation at microtubule walls in the spindle. J Cell Biol 202, 25-33. >>Link
  7. Uehara, R., Tsukada, Y., Kamasaki, T., Poser, I., Yoda, K., Gerlich, D.W., and Goshima, G. (2013). Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase. J Cell Biol 202, 623-636. >>Link
  8. Ito, A., and Goshima, G. (2015). Microcephaly protein Asp focuses the minus ends of spindle microtubules at the pole and within the spindle. J Cell Biol 211, 999-1009. >>Link
  9. Watanabe, S., Shioi, G., Furuta, Y., and Goshima, G. (2016). Intra-spindle microtubule assembly regulates clustering of microtubule-organizing centers during early mouse development. Cell Rep 15, 54-60. >>Link
  10. Ito, A., Tungadi, A.E., Kiyomitsu, T., and Goshima, G. (2017). Human microcephaly ASPM protein is a spindle pole-focusing factor. bioRxiv. >>Link

このページのコンテンツには、Adobe Flash Player の最新バージョンが必要です。

Adobe Flash Player を取得

Fig. 1: Spindle dynamics
 Moss P. patens for plant cell biology
  1. Nakaoka, Y., Miki, T., Fujioka, R., Uehara, R., Tomioka, A., Obuse, C., Kubo, M., Hiwatashi, Y., and Goshima, G. (2012). An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation. Plant Cell 24, 1478-1493. >>Link
  2. Kosetsu, K., de Keijzer, J., Janson, M.E., and Goshima, G. (2013). MICROTUBULE-ASSOCIATED PROTEIN65 is essential for maintenance of phragmoplast bipolarity and formation of the cell plate in Physcomitrella patens. Plant Cell 25, 4479-4492. >>Link
  3. Miki, T., Naito, H., Nishina, M., and Goshima, G. (2014). Endogenous localizome identifies 43 mitotic kinesins in a plant cell. Proc Natl Acad Sci U S A 111, E1053-1061. >>Link
  4. Jonsson, E., Yamada, M., Vale, R.D., and Goshima, G. (2015). Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants. Nat Plants 1, 15087. >>Link
  5. Miki, T., Nishina, M., and Goshima, G. (2015). RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens. Plant Cell Physiol 56, 737-749. >>Link
  6. Naito, H., and Goshima, G. (2015). NACK kinesin is required for metaphase chromosome alignment and cytokinesis in the moss Physcomitrella patens. Cell Struct Funct 40, 31-41. >>Link
  7. Nakaoka, Y., Kimura, A., Tani, T., and Goshima, G. (2015). Cytoplasmic nucleation and atypical branching nucleation generate endoplasmic microtubules in Physcomitrella patens. Plant Cell 27, 228-242. >>Link
  8. Yamada, M., and Goshima, G. (2017). Mitotic Spindle Assembly in Land Plants: Molecules and Mechanisms. Biology (Basel) 6. >>Link
  9. Yamada, M., Tanaka-Takiguchi, Y., Hayashi, M., Nishina, M., and Goshima, G. (2017). Multiple kinesin-14 family members drive microtubule minus-end-directed transport in plant cells. J Cell Biol in press. >>Link
moss physcomitrella patens
Fig. 2: Moss Physcomitrella patens

このページのコンテンツには、Adobe Flash Player の最新バージョンが必要です。

Adobe Flash Player を取得

 In vitro reconstitution of microtubule dynamics
  1. Li, W., Miki, T., Watanabe, T., Kakeno, M., Sugiyama, I., Kaibuchi, K., and Goshima, G. (2011). EB1 promotes microtubule dynamics by recruiting Sentin in Drosophila cells. J Cell Biol 193, 973-983. >>Link
  2. Li, W., Moriwaki, T., Tani, T., Watanabe, T., Kaibuchi, K., and Goshima, G. (2012). Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin. J Cell Biol 199, 849-862. >>Link
  3. Moriwaki, T., and Goshima, G. (2016). Five factors can reconstitute all three phases of microtubule polymerization dynamics. J Cell Biol 215, 357-368. >>Link >>Link2

このページのコンテンツには、Adobe Flash Player の最新バージョンが必要です。

Adobe Flash Player を取得


Fig. 3: Microtubule polymerisation dynamics reconstituted in vitro.
 New type of genetics using fission yeast
This project began in 2016. G.G. took a 6-month sabbatical and learned basic technique of fission yeast genetics in Prof. Ken Sawin’s lab at University of Edinburgh, Scotland.
●Kiyomitsu group
 This group was founded in August 2013. Based on my postdoctoral work (Kiyomitsu and Cheeseman, Cell 2013, Nat. Cell Biol. 2012), our group is interested in studying the mechanisms of equal-sized cell division in vertebrate mitosis and the biological significance of cell size symmetry during organismal development. We combine advanced live cell imaging with novel technologies such as optogenetics and genome editing.
Original research papers
Kiyomitsu and Cheeseman, Nature Cell Biology 2012
Kiyomitsu and Cheeseman, Cell 2013
Review
Kiyomitsu, Trends in Cell Biology 2015
Link
Cell 40 under 40
>>http://www.cell.com/40/tomomi-kiyomitsu
PRESTO, Design and Control of Cellular Functions
>>http://www.jst.go.jp/presto/synbio/en/member/researcher3.html#_researcher4
 
© 2008-2015 Goshima Lab. All rights reserved.