The Goshima Lab Home Page
top
五島剛太
Research projects
Publications
People
Japanese English
Research Projects
 We are interested in the mechanism of cell growth and division. We have adopted multiple methodologies and model systems, such as high-resolution live cell microscopy in animal, plant, fungal, and macroalgal cells and in vitro reconstitution. Currently we conduct marine cell biology in Sugashima Marine Biological Laboratory (NU-MBL) and plant cell biology in Nagoya.
 Mitotic spindle formation in animal cells
  1. Goshima, G., Wollman, R., Goodwin, S.S., Zhang, N., Scholey, J.M., Vale, R.D., and Stuurman, N. (2007). Genes required for mitotic spindle assembly in Drosophila S2 cells. Science. 316, 417-421. >>Link
  2. Goshima, G., Mayer, M., Zhang, N., Stuurman, N., and Vale, R.D. (2008). Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J Cell Biol. 181, 421-429. >>Link
  3. Uehara, R., Nozawa, R.S., Tomioka, A., Petry, S., Vale, R.D., Obuse, C., and Goshima, G. (2009). The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells. Proc Natl Acad Sci U S A. 106, 6998-7003. >>Link
  4. Uehara, R., and Goshima, G. (2010). Functional central spindle assembly requires de novo microtubule generation in the interchromosomal region during anaphase. J Cell Biol. 191, 259-267. >>Link
  5. Goshima, G. (2011). Identification of a TPX2-like microtubule-associated protein in Drosophila. PLoS One. 6, e28120. >>Link
  6. Kamasaki, T., O'Toole, E., Kita, S., Osumi, M., Usukura, J., McIntosh, J.R., and Goshima, G. (2013). Augmin-dependent microtubule nucleation at microtubule walls in the spindle. J Cell Biol. 202, 25-33. >>Link
  7. Uehara, R., Tsukada, Y., Kamasaki, T., Poser, I., Yoda, K., Gerlich, D.W., and Goshima, G. (2013). Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase. J Cell Biol. 202, 623-636. >>Link
  8. Ito, A., and Goshima, G. (2015). Microcephaly protein Asp focuses the minus ends of spindle microtubules at the pole and within the spindle. J Cell Biol. 211, 999-1009. >>Link
  9. Watanabe, S., Shioi, G., Furuta, Y., and Goshima, G. (2016). Intra-spindle microtubule assembly regulates clustering of microtubule-organizing centers during early mouse development. Cell Rep. 15, 54-60. >>Link
  10. Tungadi, A.E., Ito, A., Kiyomitsu, T., and Goshima, G. (2017). Human microcephaly ASPM protein is a spindle pole-focusing factor.J Cell Sci. 130, 3676-3684. >>Link1 >>Link2
  11. Edzuka, T., and Goshima, G. (2019). Drosophila kinesin-8 stabilizes the kinetochore–microtubule interaction. J Cell Biol. 218, 474-488. >>Link1 >>Link2
  12. Tsuchiya, K., and Goshima, G. (2021). Microtubule-associated proteins promote microtubule generation in the absence of γ-tubulin in human colon cancer cells J Cell Biol. 220, e202104114. >>Link
  13. Yi P., Goshima G. (2022). Division site determination during asymmetric cell division in plants. Plant Cell. 24, koac069. >>Link

Movie 1: Spindle dynamics
 Marine cell biology
  1. Goshima, G. (2022). Growth and division mode plasticity is dependent on cell density in marine-derived black yeasts. Genes Cells. 27, 124-137. >>Link
  2. Shirae-Kurabayashi M., Edzuka T., Suzuki M., Goshima G. (2022). Cell tip growth underlies injury response of marine macroalgae. PLoS ONE. 17, e0264827. >>Link
 Moss P. patens for plant cell biology
  1. Nakaoka, Y., Miki, T., Fujioka, R., Uehara, R., Tomioka, A., Obuse, C., Kubo, M., Hiwatashi, Y., and Goshima, G. (2012). An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation. Plant Cell. 24, 1478-1493. >>Link
  2. Kosetsu, K., de Keijzer, J., Janson, M.E., and Goshima, G. (2013). MICROTUBULE-ASSOCIATED PROTEIN65 is essential for maintenance of phragmoplast bipolarity and formation of the cell plate in Physcomitrella patens. Plant Cell. 25, 4479-4492. >>Link
  3. Miki, T., Naito, H., Nishina, M., and Goshima, G. (2014). Endogenous localizome identifies 43 mitotic kinesins in a plant cell. Proc Natl Acad Sci U S A. 111, E1053-1061. >>Link
  4. Jonsson, E., Yamada, M., Vale, R.D., and Goshima, G. (2015). Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants. Nat Plants. 1, 15087. >>Link
  5. Miki, T., Nishina, M., and Goshima, G. (2015). RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens. Plant Cell Physiol. 56, 737-749. >>Link
  6. Naito, H., and Goshima, G. (2015). NACK kinesin is required for metaphase chromosome alignment and cytokinesis in the moss Physcomitrella patens. Cell Struct Funct. 40, 31-41. >>Link
  7. Nakaoka, Y., Kimura, A., Tani, T., and Goshima, G. (2015). Cytoplasmic nucleation and atypical branching nucleation generate endoplasmic microtubules in Physcomitrella patens. Plant Cell. 27, 228-242. >>Link
  8. Yamada, M., and Goshima, G. (2017). Mitotic Spindle Assembly in Land Plants: Molecules and Mechanisms. Biology (Basel). 6. >>Link
  9. Yamada, M., Tanaka-Takiguchi, Y., Hayashi, M., Nishina, M., and Goshima, G. (2017). Multiple kinesin-14 family members drive microtubule minus-end-directed transport in plant cells. J Cell Biol. 216, 1705-1714. >>Link1 >>Link2
  10. Kosetsu, K., Murata, T., Yamada, M., Nishina, M., Boruc, J., Hasebe, M., Van Damme, D., and Goshima, G. (2017). Cytoplasmic MTOCs control spindle orientation for asymmetric cell division in plants. Proc Natl Acad Sci U S A. 114, E8847-E8854. >>Link
  11. Leong, SY., Yamada, M., Yanagisawa, N., and Goshima, G. (2018). SPIRAL2 Stabilises Endoplasmic Microtubule Minus Ends in the Moss Physcomitrella patens. Cell Struct Funct. 43, 53-60. >>Link
  12. Yamada, M., and Goshima, G. (2018). The KCH Kinesin Drives Nuclear Transport and Cytoskeletal Coalescence to Promote Tip Cell Growth in Physcomitrella patens. Plant Cell. 30, 1496-1510. >>Link
  13. Yi, P., and Goshima, G. (2018). Microtubule nucleation and organization without centrosomes. Curr Opin Plant Biol. 46, 1-7. >>Link
  14. Kozgunova, E., Nishina, M., and Goshima, G. (2019). Chromosome missegregation causes somatic polyploidization in plants eLife. pii:e43652. >>Link
  15. Yoshida, M.W., Yamada, M., Goshima, G. (2019). Moss Kinesin-14 KCBP Accelerates Chromatid Motility in Anaphase Cell Struct Funct. 44, 95-104.  >>Link
  16. Yi, P., and Goshima, G. (2020). Transient cotransformation of CRISPR/Cas9 and oligonucleotide templates enables efficient editing of target loci in Physcomitrella patens. Plant Biotechnol J. 18, 599-601.  >>Link
  17. Leong, S.Y., Edzuka, T., Goshima, G., and Yamada, M. (2020). Kinesin-13 and Kinesin-8 Function during Cell Growth and Division in the Moss Physcomitrella patens Plant Cell. 36, 683-702.  >>Link
  18. Yi, P., and Goshima, G. (2020). Rho of Plants GTPases and Cytoskeletal Elements Control Nuclear Positioning and Asymmetric Cell Division during Physcomitrella patens Branching. Curr Biol. 30, 2860-2868.  >>Link
moss physcomitrella patens
Fig. 1: Moss Physcomitrella patens

Movie 2: Mitosis in a moss stem cell
Green:GFP-tubulin / Red:Histone-RFP
 ‘Bypass-of-essentiality’ screening using fission yeast
  1. Takeda, A., Saitoh, S., Ohkura, H., Sawin, K.E., and Goshima, G. (2019). Identification of 15 New Bypassable Essential Genes of Fission Yeast Cell Struct Funct. 44, 113-119. >>Link
  2. Kim J., Goshima G. (2022). Mitotic spindle formation in the absence of Polo kinase. Proc Natl Acad Sci U S A. 119, e2114429119.  >>Link
 
© 2008-2015 Goshima Lab. All rights reserved.