The Goshima Lab Home Page
JapaneseEnglish
>>TOP >>Research Projects
>>Publications >>People
・Publications

>>1999-2002 >>2003-2006 >>2007-2010
>>2011-2014 >>2015-2018 >>2019-2022
>>2023-

 2023-

Goda M, Shribak M, Ikeda Z, Okada N, Tani T, Goshima G, Oldenbourg R, Kimura A. (2024)
Live-cell imaging under centrifugation characterized the cellular force for nuclear centration in the Caenorhabditis elegans embryo
Proc Natl Acad Sci U S A.  121(43):e2402759121

Ochiai KK, Hanawa D, Ogawa HA, Tanaka H, Uesaka K, Edzuka T, Shirae-Kurabayashi M, Toyoda A, Itoh T, Goshima G. (2024)
Genome sequence and cell biological toolbox of the highly regenerative, coenocytic green feather alga Bryopsis
Plant J.  119(2):1091-1111

Yoshida MW, Oguri N, Goshima G. (2023)
Physcomitrium patens SUN2 mediates MTOC association to the nuclear envelope and facilitates chromosome alignment during spindle assembly
Plant Cell Physiol.  64(9):1106-1117

Yoshida MW, Hakozaki M, Goshima G. (2023)
Armadillo repeat-containing kinesin represents the versatile plus-end-directed transporter in Physcomitrella
Nat Plants. 9(5):733-748

Kurita G, Goshima G, Uesaka K. (2023)
Draft Genome Sequences of Two Dothideomycetes Strains, NU30 and NU200, Derived from the Marine Environment around Sugashima, Japan
Microbiology Resource Announcements. 12(5):e01217-22

Ta KN*, Yoshida MW*, Tezuka T, Shimizu-Sato S, Nosaka-Takahashi M, Toyoda A, Suzuki T, Goshima G, Sato Y. (2023)
Control of plant cell growth and proliferation by MO25A, a conserved major component of the Mammalian Sterile20-like kinase pathway
Plant and Cell Physiology. 64(3):336-351 * equal contribution

Yoshida MW, Kozgunova E. (2023)
Microfluidic Device for High-Resolution Cytoskeleton Imaging and Washout Assays in Physcomitrium (Physcomitrella) patens.
Methods Mol Biol. 2604:143-158

▲ページトップ


 2019-2022

Kozgunova E, Yoshida MW, Reski R, Goshima G. (2022)
Spindle motility skews division site determination during asymmetric cell division in Physcomitrella
Nat Commun. 13(1):2488

Shirae-Kurabayashi M, Edzuka T, Suzuki M, Goshima G. (2022)
Cell tip growth underlies injury response of marine macroalgae
PLoS ONE. 17(3):e0264827

Kim J, Goshima G. (2022)
Mitotic spindle formation in the absence of Polo kinase
Proc Natl Acad Sci U S A. 119(12):e2114429119

Molines AT, Lemière J, Gazzola M, Steinmark IE, Edrington CH, Hsu C-T, Real-Calderon P, Suhling K, Goshima G, Holt LJ, Thery M, Brouhard GJ, Chang F. (2022)
Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization
Dev Cell. 57(4):466-479

Yi P, Goshima G. (2022)
Division site determination during asymmetric cell division in plants
Plant Cell. 24:koac069

Goshima G (2022)
Growth and division mode plasticity is dependent on cell density in marine-derived black yeasts
Genes Cells. 27(2):124-137

Roeder AHK, Otegui MS, Dixit R, Anderson CT, Faulkner C, Zhang Y, Harrison MJ, Kirchhelle C, Goshima G, Coate JE, Doyle JJ, Hamant O, Sugimoto K, Dolan L, Meyer H, Ehrhardt DW, Boudaoud A, Messina C. (2022)
Fifteen compelling open questions in plant cell biology
Plant Cell. 34(1):72-102

Goshima G. (2021)
Microtubule Nucleation Pathways
Encyclopedia of Biological Chemistry III (Third Edition) 5:547-553

Tsuchiya K, Goshima G. (2021)
Microtubule-associated proteins promote microtubule generation in the absence of γ-tubulin in human colon cancer cells
J Cell Biol. 220(12):e202104114

Umeda M, Ikeuchi M, Ishikawa M, Ito T, Nishihama R, Kyozuka J, Torii KU, Satake A, Goshima G, Sakakibara H. (2021)
Plant stem cell research is uncovering the secrets of longevity and persistent growth
Plant J. 106(2):326-335

Gomes Pereira S, Sousa AL, Nabais C, Paixão T, Holmes AJ, Schorb M, Goshima G, Tranfield EM, Becker JD, Bettencourt-Dias M. (2021)
The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles
Curr Biol. 31:1-14

Tsuchiya K, Hayashi H, Nishina M, Okumura M, Kanemaki MT, Goshima G, Kiyomitsu T. (2021)
Ran-GTP is non-essential to activate NuMA for mitotic spindle-pole focusing, but dynamically regulates and maintains HURP near chromosomes.
Curr Biol. 31(1):115-127

Yi P, Goshima G. (2020)
Rho of Plants GTPases and Cytoskeletal Elements Control Nuclear Positioning and Asymmetric Cell Division during Physcomitrella patens Branching.
Curr Biol. 30(14):2860-2868

Leong SY, Edzuka T, Goshima G, Yamada M. (2020)
Kinesin-13 and Kinesin-8 Function during Cell Growth and Division in the Moss Physcomitrella patens
Plant Cell. 32(3):683-702

Yi P, Goshima G. (2020)
Transient cotransformation of CRISPR/Cas9 and oligonucleotide templates enables efficient editing of target loci in Physcomitrella patens.
Plant Biotechnol J. 18(3):599-601

Goshima G, Bellaïche Y. (2019)
Editorial overview: Cell division – from molecules to tissues
Curr Opin Cell Biol. 60:3-5

Takeda A, Saitoh S, Ohkura H, Sawin KE, Goshima G. (2019)
Identification of 15 New Bypassable Essential Genes of Fission Yeast
Cell Struct Funct. 44(2):113-119

Kozgunova E, Goshima G. (2019)
A versatile microfluidic device for highly inclined thin illumination microscopy in the moss Physcomitrella patens
Sci Rep. 9(1):15182

Yoshida MW, Yamada M, Goshima G. (2019)
Moss Kinesin-14 KCBP Accelerates Chromatid Motility in Anaphase
Cell Struct Funct. 44(2):95-104

Kozgunova E, Nishina M, Goshima G. (2019)
Kinetochore protein depletion underlies cytokinesis failure and somatic polyploidization in the moss Physcomitrella patens
eLife pii:e43652

Edzuka T, Goshima G. (2019)
Drosophila kinesin-8 stabilizes the kinetochore–microtubule interaction
J. Cell Biol. 218(2):474-488
bioRxiv

▲PAGE TOP


 2015-2018

Yi P, Goshima G. (2018)
Microtubule nucleation and organization without centrosomes
Curr Opin Plant Biol. 46:1-7

Yamada M, Goshima G. (2018)
The KCH Kinesin Drives Nuclear Transport and Cytoskeletal Coalescence to Promote Tip Cell Growth in Physcomitrella patens
Plant Cell. 30(7):1496-1510

Leong SY, Yamada M, Yanagisawa N, Goshima G. (2018)
SPIRAL2 Stabilises Endoplasmic Microtubule Minus Ends in the Moss Physcomitrella patens
Cell Struct Funct. 43(1):53-60

Kosetsu K, Murata T, Yamada M, Nishina M, Boruc J, Hasebe M, Van Damme D, Goshima G. (2017)
Cytoplasmic MTOCs control spindle orientation for asymmetric cell division in plants
Proc Natl Acad Sci U S A. 114(42):E8847-E8854

Tungadi EA*, Ito A*, Kiyomitsu T, Goshima G. (2017)
Human microcephaly ASPM protein is a spindle pole-focusing factor that functions redundantly with CDK5RAP2
J. Cell Sci. 130:3676-3684
*equal contribution

Beaven R, Bastos RN, Spanos C, Romé P, Cullen CF, Rappsilber J, Giet R, Goshima G, Ohkura H. (2017)
14-3-3 regulation of Ncd reveals a new mechanism for targeting proteins to the spindle in oocytes.
J. Cell Biol. 216(10):3029

Yamada M, Tanaka-Takiguchi Y, Hayashi M, Nishina M, Goshima G. (2017)
Multiple kinesin-14 family members drive microtubule minus-end-directed transport in plant cells
J. Cell Biol. 216(6):1705-1714
bioRxiv
>>Link

de Keijzer J, Kieft H, Ketelaar T, Goshima G, Janson ME (2017)
Shortening of microtubule overlap regions defines membrane delivery sites during plant cytokinesis
Curr Biol. 27(4):514-520

Yamada M, Goshima G. (2017)
Mitotic Spindle Assembly in Land Plants: Molecules and Mechanisms.
Biology (Basel). 6(1)

Moriwaki T, Goshima G. (2016)
Five factors can reconstitute all three phases of microtubule polymerization dynamics
J. Cell Biol. 215(3):357-368
bioRxiv
>>Link

Watanabe S, Shioi G, Furuta Y, Goshima G. (2016)
Intra-spindle Microtubule Assembly Regulates Clustering of Microtubule-Organizing Centers during Early Mouse Development
Cell Rep. 15(1):54-60

Uehara R, Kamasaki T, Hiruma S, Poser I, Yoda K, Yajima J, Gerlich DW, Goshima G. (2016)
Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission.
Mol. Biol. Cell. 27(5):812-827

Yamada M, Miki T, Goshima G. (2016)
Imaging mitosis in the moss Physcomitrella patens.
Methods Mol Biol. 1413:263-282

Miki T*, Nakaoka Y*, Goshima G. (2016)
Live cell microscopy-based RNAi screening in the moss Physcomitrella patens.
Methods Mol Biol. 1470:225-246
*equal contribution

Gluszek AA*, Cullen CF*, Li W*, Battaglia RA, Radford SJ, Costa MF, McKim KS, Goshima G and Ohkura H. (2015)
The microtubule catastrophe promoter Sentin delays stable kinetochore-microtubule attachment in oocytes.
J. Cell Biol. 211(6):1113-1120
*equal contribution

Ito A, Goshima G. (2015)
Microcephaly protein Asp focuses the minus ends of spindle microtubules at the pole and within the spindle.
J. Cell Biol. 211(5):999-1009

Jonsson E, Yamada M, Vale RD, Goshima G. (2015)
Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants
Nat Plants. 1: 15087

Miki T, Nishina M, Goshima G. (2015)
RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens.
Plant Cell Physiol. 56(4):737-749

Naito H, Goshima G. (2015)
NACK kinesin is required for metaphase chromosome alignment and cytokinesis in the moss Physcomitrella patens.
Cell Struct and Funct. 40(1):31-41 

Nakaoka Y, Kimura A, Tani T, Goshima G. (2015)
Cytoplasmic nucleation and atypical branching nucleation generate endoplasmic microtubules in Physcomitrella patens.
Plant Cell. 27(1):228-242

▲PAGE TOP


 2011-2014

インタビュー記事(2014)
Gohta Goshima:Questing for answers on the mitotic spindle.
by Caitlin Sedwick
J. Cell Biol. 206(2):148-9. "People & Ideas"
>>Link

Edzuka T, Yamada L, Kanamaru K, Sawada H, Goshima G. (2014)
Identification of the augmin complex in the filamentous fungus Aspergillus nidulans.
PLoS One. 9(7):e101471
>>Link

Watanabe S, Goshima G. (2014)
Friction on MAP Determines Its Traveling Direction on Microtubules.
Dev Cell. 29(1):5-6 (Review)
>>Link

Miki T, Naito H, Nishina M, Goshima G. (2014)
Endogenous localizome identifies 43 mitotic kinesins in a plant cell.
Proc Natl Acad Sci U S A. 10.1073/pnas.1311243111
>>Link

Kosetsu K, de Keijzer J, Janson ME, Goshima G. (2013)
MICROTUBULE-ASSOCIATED PROTEIN65 is essential for maintenance of phragmoplast bipolarity and formation of the cell plate in Physcomitrella patens.
Plant Cell. 25(11):4479-92
>>Link

Moutinho-Pereira S, Stuurman N, Afonso O, Hornsveld M, Aguiar P, Goshima G, Vale RD, Maiato H. (2013)
Genes involved in centrosome-independent mitotic spindle assembly in Drosophila S2 cells.
Proc Natl Acad Sci U S A. 110(49):19808-13
>>Link

Watanabe S, De Zan T, Ishizaki T, Yasuda S, Kamijo H, Yamada D, Aoki T, Kiyonari H, Kaneko H, Shimizu R, Yamamoto M, Goshima G, Narumiya S. (2013)
Loss of a Rho-Regulated Actin Nucleator, mDia2, Impairs Cytokinesis during Mouse Fetal Erythropoiesis.
Cell Rep. 5(4):926-932
>>Link

Uehara R, Tsukada Y, Kamasaki T, Poser I, Yoda K, Gerlich DW, Goshima G. (2013)
Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase.
J. Cell Biol. 202(4):623-36
>>Link

Kamasaki T, O'Toole E, Kita S, Osumi M, Usukura J, McIntosh JR, Goshima G. (2013)
Augmin-dependent microtubule nucleation at microtubule walls in the spindle.
J. Cell Biol. 202(1):25-33
>>Link

Li W, Moriwaki T, Tani T, Watanabe T, Kaibuchi K, Goshima G. (2012)
Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin
J. Cell Biol. 199(5):849-62
>>Link

Nakaoka Y*, Miki T*, Fujioka R, Uehara R, Tomioka A, Obuse C, Kubo M, Hiwatashi Y, Goshima G. (2012)
An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation.
Plant Cell. 24(4):1478-93. Epub 2012 Apr 13.
*equal contribution
>>Link

Goshima G. (2011)
Identification of a TPX2-like microtubule-associated protein in Drosophila.
PLoS One. 6:e28120
>>Link

Li W, Miki T, Watanabe T, Kakeno M, Sugiyama I, Kaibuchi K, Goshima G. (2011)
EB1 promotes microtubule dynamics by recruiting Sentin in Drosophila cells.
J. Cell Biol. 193:973-83 (cover)
>>Link

▲PAGE TOP


 2007-2010

Uehara R, Goshima G. (2010)
Functional central spindle assembly requires de novo microtubule generation in the interchromosomal region during anaphase.
J. Cell Biol. 191:259-267 (cover)
>>Link

Goshima G. (2010)
Assessment of mitotic spindle phenotypes in Drosophila S2 cells.
Methods Cell Biology. 97:259-275
>>Link

Goshima G, Scholey JM. (2010)
Control of mitotic spindle length.
Annu Rev Cell Dev Biol. 26:21-57
>>Link

Uehara R, Goshima G, Mabuchi I, Vale RD, Spudich JA, Griffis ER. (2010)
Determinants of myosin II cortical localization during cytokinesis.
Curr. Biol. 20:1080-1085
>>Link

Goshima G, Kimura A.(2010)
New look inside the spindle: microtubule-dependent microtubule generation within the spindle.
Curr Opin Cell Biol. 22:44-49
>>Link

Bettencourt-Dias M, Goshima G.(2009)
RNAi in Drosophila S2 cells as a tool for studying cell cycle progression.
Methods Mol Biol. 545:39-62
>>Link

Uehara R, Nozawa RS, Tomioka A, Petry S, Vale RD, Obuse C, Goshima G.(2009)
The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells.
Proc Natl Acad Sci U S A. 106:6998-7003
>>Link

Goshima G, Mayer M, Zhang N, Stuurman, Vale RD (2008)
Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle.
J. Cell Biol. 181:421-429
>>Link

Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese Jr RV. (2008)
Functional genomic screen reveals genes involved in lipid droplet formation and utilization.
Nature. 453:657-661
>>Link

Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, Vale RD, Stuurman N. (2007)
Genes required for mitotic spindle assembly in Drosophila S2 cells
Science 316:417-421
>>Link

▲ページトップ


 2003-2006

Aoki K, Nakaseko Y, Kinoshita K, Goshima G, Yanagida M. (2006)
Cdc2 phosphorylation of fission yeast Dis1 similar to XMAP215/TOG improves segregation accuracy via metaphase kinetochore localization.
Curr. Biol. 16:1627-1635
>>Link

Mahoney NM, Goshima G, Douglass A, Vale RD. (2006)
Making microtubules and mitotic spindles in cells without functional centrosomes.
Curr. Biol. 16:564-569
>>Link

Minin AA, Kulik AV, Gyoeva FK, Li Y, Goshima G, Gelfand VI. (2006)
Regulation of mitochondrial transport by RhoA and formins.
J. Cell Sci. 119:659-670
>>Link

Goshima G*, Wollman R*, Stuurman N, Scholey JM, Vale RD. (2005)
Length control of metaphase spindle.
Curr. Biol. 15:1979-1988 (cover)
*equal contribution
>>Link

Goshima G, Nedelec F, Vale RD. (2005)
Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins.
J. Cell Biol. 171:229-240 (cover)
>>Link

Goshima G, Vale RD. (2005)
Cell cycle-dependent dynamics and regulation of mitotic kinesins in Drosophila S2 cells.
Mol. Biol. Cell. 16:3896-3907
>>Link

Kural C, Kim H, Syed S, Goshima G, Gelfand VI, Selvin PR. (2005)
Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement?
Science 308:1469-1472
>>Link

Obuse C, Iwasaki O, Kiyomitsu T, Goshima G, Toyoda Y, Yanagida M. (2004)
A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1.
Nat. Cell Biol. 6:1135-1141
>>Link

Goshima G, Vale RD. (2003)
The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line.
J. Cell Biol. 162:1003-1016 (cover)
>>Link

Goshima G, Iwasaki O, Obuse C, Yanagida M. (2003)
The role of Ppe1/PP6 phosphatase for equal chromosome segregation in fission yeast kinetochore.
EMBO J. 22:2752-2763
>>Link

Goshima G, Kiyomitsu T, Yoda K, Yanagida M. (2003)
Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway.
J. Cell Biol. 160:25-39
>>Link

▲PAGE TOP


 1999-2002

Toyoda Y, Furuya K, Goshima G, Nagao K, Takahashi K, Yanagida M. (2002)
Requirement of chromatid cohesion proteins rad21/scc1 and mis4/scc2 for normal spindle-kinetochore interaction in fission yeast.
Curr Biol. 12:347-358
>>Link

Goshima G, Yanagida M. (2001)
Time course analysis of precocious separation of sister centromeres in budding yeast: continuously separated or frequently reassociated?
Genes Cells 6:765-773 (cover)
>>Link

Morishita J, Matsusaka T, Goshima G, Nakamura T, Tatebe H, Yanagida M. (2001)
Bir1/Cut17 moving from chromosome to spindle upon the loss of cohesion is required for condensation, spindle elongation and repair.
Genes Cells 6:743-763
>>Link

Nakaseko Y, Goshima G, Morishita J, Yanagida M. (2001)
M phase-specific kinetochore proteins in fission yeast: microtubule-associating Dis1 and Mtc1 display rapid separation and segregation during anaphase.
Curr. Biol. 11:537-549
>>Link

Tatebe H, Goshima G, Takeda K, Nakagawa T, Kinoshita K, Yanagida M. (2001)
Fission yeast living mitosis visualized by GFP-tagged gene products.
Micron 32:67-74
>>Link

Goshima G, Yanagida M. (2000)
Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast.
Cell 100:619-633
>>Link

Goshima G, Saitoh S, Yanagida M. (1999)
Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation.
Genes Dev. 13:1664-1677
>>Link

▲PAGE TOP


 日本語総説

釜崎とも子上原亮太(2013)
紡錘体微小管の生成メカニズムに関する微細構造学的解析
顕微鏡 48-2

中岡由貴上原亮太(2013)
動物と植物におけるオーグミンの分裂期スピンドル形成への寄与
細胞工学 32:263-268

上原亮太五島剛太 (2010)
分裂期スピンドル形成における微小管生成機構
細胞工学 29:885-889

上原亮太五島剛太 (2009)
オーグミン複合体による細胞分裂期スピンドルの形成機構
蛋白質核酸酵素 54(14):1850-1855

五島剛太
(2006)
分裂期キネシンの機能メカニズム
蛋白質核酸酵素 51(6 Suppl):579-585

五島剛太, 柳田充弘 (2000)
出芽酵母における姉妹セントロメアの時期尚早な分離
実験医学


▲PAGE TOP