REFERENSE

2022

  • Mutations in the stator protein PomA affect switching of rotational direction in bacterial flagellar motor
    Terashima H, Hori K, Ihara K, Homma M, Kojima S.
    Sci Rep. 2022 Feb 22;12(1):2979. doi: 10.1038/s41598-022-06947-5.PMID: 35194097 PubMed
  •  
  • Roles of the second messenger c-di-GMP in bacteria: Focusing on the topics of flagellar regulation and Vibrio spp
    Homma M, Kojima S.
    Genes Cells.2022 Jan 24. doi: 10.1111/gtc.12921. Online ahead of print.PMID: 35073606 Review. PubMed
  • Hoop-like role of the cytosolic interface helix in Vibrio PomA, an ion-conducting membrane protein, in the bacterial flagellar motor
    Nishikino T, Sagara Y, Terashima H, Homma M, Kojima S.
    J Biochem. 2022 Jan 6:mvac001. doi: 10.1093/jb/mvac001. Online ahead of print.PMID: 35015887 PubMed
  •  

    2021

    • Stator Dynamics Depending on Sodium Concentration in Sodium-Driven Bacterial Flagellar Motors
      Lin TS, Kojima S, Fukuoka H, Ishijima A, Homma M, Lo CJ.
      Front Microbiol.2021 Nov 26;12:765739. doi: 10.3389/fmicb.2021.765739. eCollection 2021.PMID: 34899649 PubMed
    • Achievements in bacterial flagellar research with focus on Vibrio species
      Michio Homma, Tatsuro Nishikino, Seiji Kojima.
      Microbiol Immunol..2021 Nov 29. doi: 10.1111/1348-0421.12954. Online ahead of print.PMID: 34842307 Review. PubMed
    • ZomB is essential for chemotaxis of Vibrio alginolyticus by the rotational direction control of the polar flagellar motor
      Takekawa N, Nishikino T, Hori K, Kojima S, Imada K, Homma M.
      Genes Cells. .2021 Sep 6. doi: 10.1111/gtc.12895. Online ahead of print.PMID: 34487583 PubMed
    • A slight bending of an α-helix in FliM creates a counterclockwise-locked structure of the flagellar motor in Vibrio
      Takekawa N, Nishikino T, Yamashita T, Hori K, Onoue Y, Ihara K, Kojima S, Homma M, Imada K.
      J Biochem. . 2021 Jun 18:mvab074. doi: 10.1093/jb/mvab074. Online ahead of print.PMID: 34143212 PubMed
    • Putative Spanner Function of the Vibrio PomB Plug Region in the Stator Rotation Model for Flagellar Motor
      Homma M, Terashima H, Koiwa H, Kojima S.
      J Bacteriol.. 2021 Jul 22;203(16):e0015921. doi: 10.1128/JB.00159-21. Epub 2021 Jul 22.PMID: 34096782 PubMed
    • Two Distinct Conformations in 34 FliF Subunits Generate Three Different Symmetries within the Flagellar MS-Ring.
      Takekawa N, Kawamoto A, Sakuma M, Kato T, Kojima S, Kinoshita M, Minamino T, Namba K, Homma M, Imada K.
      mBio. 2021 Mar 2;12(2):e03199-20. doi: 10.1128/mBio.03199-20. PMID:33653894PubMed
    • Site-directed crosslinking identifies the stator-rotor interaction surfaces in a hybrid bacterial flagellar motor.
      Terashima H, Kojima S, Homma M.
      J Bacteriol. 2021 Feb 22:JB.00016-21. doi: 10.1128/JB.00016-21. Online ahead of print. PMID:33619152PubMed
    • Role of the N- and C-terminal regions of FliF, the MS ring component in Vibrio flagellar basal body.
      Kojima S, Kajino H, Hirano K, Inoue Y, Terashima H, Homma M.
      J Bacteriol. 2021 Feb 22:JB.00009-21. doi: 10.1128/JB.00009-21. Online ahead of print. PMID:33619151PubMed

    2020

    • The flagellar motor of Vibrio alginolyticus undergoes major structural remodeling during rotational switching.
      Carroll BL, Nishikino T, Guo W, Zhu S, Kojima S, Homma M, Liu J.
      eLife. 2020 Sep 7;9:e61446. doi: 10.7554/eLife.61446. PMID: 32893817PubMed
    • Structure and Energy-Conversion Mechanism of the Bacterial Na+-Driven Flagellar Motor.
      Takekawa N, Imada K, Homma M.
      Trends Microbiol. 2020 Sep;28(9):719-731. doi: 10.1016/j.tim.2020.03.010. Epub 2020 Apr 23. PMID: 32781026PubMed
    • Assembly mechanism of a supramolecular MS-ring complex to initiate bacterial flagellar biogenesis in Vibrio species.
      Terashima H, Hirano K, Inoue Y, Tokano T, Kawamoto A, Kato T, Yamaguchi E, Namba K, Uchihashi T, Kojima S, Homma M.
      J Bacteriol. 2020 Jun 1:JB.00236-20. doi: 10.1128/JB.00236-20. Online ahead of print. PMID: 32482724PubMed
    • Live-cell fluorescence imaging reveals dynamic production and loss of bacterial flagella.
      Zhuang XY, Guo S, Li Z, Zhao Z, Kojima S, Homma M, Wang P, Lo CJ, Bai F.
      Mol Microbiol. 2020 Aug;114(2):279-291. doi: 10.1111/mmi.14511. Epub 2020 May 2. PMID: 32244780PubMed
    • Regulation of the Single Polar Flagellar Biogenesis.
      Kojima S, Terashima H, Homma M.
      Biomolecules. 2020 Apr 1;10(4):533. doi: 10.3390/biom10040533. PMID: 32259388PubMed
    • Characterization of the MinD/ParA-type ATPase FlhG in Vibrio alginolyticus and implications for function of its monomeric form.
      Kojima S, Imura Y, Hirata H, Homma M.
      Genes Cells. 2020 Feb 3. doi: 10.1111/gtc.12754.PubMed
    • Tree of motility - A proposed history of motility systems in the tree of life.
      Miyata M, Robinson RC, Uyeda TQP, Fukumori Y, Fukushima SI, Haruta S, Homma M, Inaba K, Ito M, Kaito C, Kato K, Kenri T, Kinosita Y, Kojima S, Minamino T, Mori H, Nakamura S, Nakane D, Nakayama K, Nishiyama M, Shibata S, Shimabukuro K, Tamakoshi M, Taoka A, Tashiro Y, Tulum I, Wada H, Wakabayashi KI.
      Genes Cells. 2020 Jan;25(1):6-21. doi: 10.1111/gtc.12737.PubMed
    • Characterization of FliL Proteins in Bradyrhizobium diazoefficiens: Lateral FliL Supports Swimming Motility, and Subpolar FliL Modulates the Lateral Flagellar System.
      Mengucci F, Dardis C, Mongiardini EJ, Althabegoiti MJ, Partridge JD, Kojima S, Homma M, Quelas JI, Lodeiro AR.
      J Bacteriol. 2020 Feb 11;202(5). pii: e00708-19. doi: 10.1128/JB.00708-19.PubMed
    • Characterization of PomA periplasmic loop and sodium ion entering in stator complex of sodium-driven flagellar motor.
      Nishikino T, Iwatsuki H, Mino T, Kojima S, Homma M.
      J. Biochem. 2020 Apr 1;167(4):389-398. pii: mvz102. doi: 10.1093/jb/mvz102. PubMed
    • In situ structure of the Vibrio polar flagellum reveals distinct outer membrane complex and its specific interaction with the stator.
      Zhu S, Nishikino T, Takekawa N, Terashima H, Kojima S, Imada K, Homma M, Liu J
      J Bacteriol. 2020 Jan 29;202(4). pii: e00592-19. doi: 10.1128/JB.00592-19. PubMed
    • In vitro autonomous construction of the flagellar axial structure in inverted membrane vesicles.
      Terashima H, Tatsumi C, Kawamoto A, Namba K, Minamino T and Imada K.
      Biomolecules. 2020 Jan 11;10(1). pii: E126. doi: 10.3390/biom10010126. PubMed

    2019

    • Essential ion binding residues for Na+ flow in stator complex of the Vibrio flagellar motor.
      Onoue Y, Iwaki M, Shinobu A, Nishihara Y, Iwatsuki H, Terashima H, Kitao A, Kandori H, Homma M.
      Sci Rep. 2019 Aug 2;9(1):11216. doi: 10.1038/s41598-019-46038-6. PubMed
    • Structure of the periplasmic domain of SflA involved in spatial regulation of the flagellar biogenesis of Vibrio reveals a TPR/SLR-like fold.
      Sakuma M, Nishikawa S, Inaba S, Nishigaki T, Kojima S, Homma M, Imada K.
      J. Biochem. 2019 Aug 1;166(2):197-204. doi: 10.1093/jb/mvz027. PubMed
    • Effect of sodium ions on conformations of the cytoplasmic loop of the PomA stator protein of Vibrio alginolyticus.
      Mino T, Nishikino T, Iwatsuki H, Kojima S, Homma M.
      J. Biochem. 2019 May 30. pii: mvz040. doi: 10.1093/jb/mvz040. PubMed
    • Structure of Vibrio FliL, a New Stomatin-like Protein That Assists the Bacterial Flagellar Motor Function.
      Takekawa N, Isumi M, Terashima H, Zhu S, Nishino Y, Sakuma M, Kojima S, Homma M, Imada K.
      MBio. 2019 Mar 19;10(2). pii: e00292-19. doi: 10.1128/mBio.00292-19.PubMed
    • Effect of PlzD, a YcgR homolog of c-di-GMP binding protein, on polar flagellar motility in Vibrio alginolyticus.
      Kojima S, Yoneda T, Morimoto W, Homma M.
      J Biochem. 2019 Feb 18. doi: 10.1093/jb/mvz014.PubMed
     

    2018

    • Rotational direction of flagellar motor from the conformation of FliG middle domain in marine Vibrio.
      Nishikino T, Hijikata A, Miyanoiri Y, Onoue Y, Kojima S, Shirai T, Homma M.
      Sci Rep. 2018 Dec 12;8(1):17793. doi: 10.1038/s41598-018-35902-6.PubMed
    • Biochemical analysis of GTPase FlhF which controls the number and position of flagellar formation in marine Vibrio.
      Kondo S, Imura Y, Mizuno A, Homma M, Kojima S.
      Sci Rep. 2018 Aug 14;8(1):12115. doi: 10.1038/s41598-018-30531-5.PubMed
    • The Vibrio H-ring facilitates the outer membrane penetration of polar-sheathed flagellum.
      Zhu S, Nishikino T, Kojima S, Homma M, Liu J.
      J Bacteriol. 2018 Aug 13. pii: JB.00387-18. doi: 10.1128/JB.00387-18. [Epub ahead of print]PubMed
    • FliL association with flagellar stator in the sodium-driven Vibrio motor characterized by the fluorescent microscopy.
      Lin TS, Zhu S, Kojima S, Homma M, Lo CJ.
      Sci Rep. 2018 Jul 24;8(1):11172. doi: 10.1038/s41598-018-29447-x. PubMed
    • In vitro reconstitution of functional type III protein export and insights into flagellar assembly.
      Terashima H, Kawamoto A, Tatsumi C, Namba K, Minamino T, Imada K.
      mBio, 2018 Jun 26;9(3). pii: e00988-18. doi: 10.1128/mBio.00988-18. PubMed
    • The Helix Rearrangement in the Periplasmic Domain of the Flagellar Stator B Subunit Activates Peptidoglycan Binding and Ion Influx.
      Kojima S, Takao M, Almira G, Kawahara I, Sakuma M, Homma M, Kojima C, Imada K.
      Structure 2018 Apr 3;26(4):590-598.e5. doi: 10.1016/j.str.2018.02.016. PubMed
    • The role of conserved charged residues in the bidirectional rotation of the bacterial flagellar motor.
      Onoue Y, Takekawa N, Nishikino T, Kojima S, Homma M.
      Microbiologyopen 2018 Mar 24:e00587. doi: 10.1002/mbo3.587. PubMed
    • Solution structure analysis of the periplasmic region of bacterial flagellar motor stators by small angle X-ray scattering.
      Liew CW, Hynson RM, Ganuelas LA, Shah-Mohammadi N, Duff AP, Kojima S, Homma M, Lee LK.
      Biochem Biophys Res Commun 2018 Jan 8;495(2):1614-1619. doi: 10.1016/j.bbrc.2017.11.194. PubMed

    2017

    • Mechanism of stator assembly and incorporation into the flagellar motor.
      Kojima S.
      Methods Mol. Biol. 2017 1593, 147-159. doi: 10.1007/978-1-4939-6927-2_11. PubMed
    • Analysis of the GTPase motif of FlhF in the control of the number and location of polar flagella in Vibrio alginolyticus.
      Kondo S, Homma M, Kojima S.
      Biophys Physicobiol. 2017 Dec 5;14:173-181. doi: 10.2142/biophysico.14.0_173. PubMed
    • Application of Environmental Scanning Electron Microscope-Nanomanipulation System on Spheroplast Yeast Cells Surface Observation.
      Rad MA, Ahmad MR, Nakajima M, Kojima S, Homma M, Fukuda T.
      Scanning 2017 Apr 27;2017:8393578. doi: 10.1155/2017/8393578.PubMed
    • Molecular architecture of the sheathed polar flagellum in Vibrio alginolyticus.
      Zhu S, Nishikino T, Hu B, Kojima S, Homma M & Liu J.
      Proc Natl Acad Sci U S A 2017 Sep 25. pii: S201712489. doi: 10.1073/pnas.1712489114PubMed
    • Structural and Functional Analysis of the C-Terminal Region of FliG, an Essential Motor Component of Vibrio Na+-Driven Flagella.
      Miyanoiri Y, Hijikata A, Nishino Y, Gohara M, Onoue Y, Kojima S, Kojima C, Shirai T, Kainosho M, Homma M.
      Structure 2017 Sep 6. pii: S0969-2126(17)30263-0. doi: 10.1016/j.str.2017.08.010 PubMed
    • Localization and domain characterization of the SflA regulator of flagellar formation in Vibrio alginolyticus.
      Inaba S, Nishigaki T, Takekawa N, Kojima S, Homma M.
      Genes Cells 2017 Jul;22(7):619-627. doi: 10.1111/gtc.12501. Epub 2017 May 22 PubMed
    • Structure of the Sodium-Driven Flagellar Motor in Marine Vibrio.
      Onoue Y, Homma M.
      Methods Mol Biol 2017;1593:253-258. doi: 10.1007/978-1-4939-6927-2_20   PubMed
    • Biochemical characterization of the flagellar stator-associated inner membrane protein FliL from Vibrio alginolyticus
      Kumar A, Isumi M, Sakuma M, Zhu S, Nishino Y, Onoue Y, Kojima S, Miyanoiri Y, Imada K, Homma M
      J. Biochem. 161 (4): 331-337 (2017) doi: 10.1093/jb/mvw076 PubMed
    • Mutational analysis and overproduction effects of MotX, an essential component for motor function of Na+-driven polar flagella of Vibrio
      Takekawa N, Kojima S, and Homma M.
      J. Biochem. 161 (2): 159-166 (2017) doi: 10.1093/jb/mvw061 PubMed
    • 2016

    • Domain-based biophysical characterization of the structural and thermal stability of FliG, an essential rotor component of the Na+-driven flagellar motor
      Onoue Y, Abe-Yoshizumi R, Gohara M, Nishino Y, Kobayashi K, Asami Y, and Homma M.
      Biophy. Physicobiol. 13: 227-233(2016) doi: 10.2142/biophysico.13.0_227 PubMed
    • HubP, a polar landmark protein, regulates flagellar number by assisting in the proper polar localization of FlhG in Vibrio alginolyticus. Takekawa N, Kwon S, Nishioka N, Kojima S, Homma M.
      J Bacteriol. 198(22):3091-3098 (2016) doi: 10.1128/JB.00462-16PubMed
    • The tetrameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium.
      Takekawa N, Terahara N, Kato T, Gohara M, Mayanagi K, Hijikata A, Onoue Y, Kojima S, Shirai T, Namba K, Homma M.
      Sci Rep. 6:31526 (2016) doi: 10.1038/srep31526.PubMed
    • Serine suppresses the motor function of a periplasmic PomB mutation in the Vibrio flagella stator.
      Nishikino T, Zhu S, Takekawa N, Kojima S, Onoue Y, Homma M.
      Genes Cells. 21(5):505-516 (2016) doi: 10.1111/gtc.12357. PubMed
    • FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella.
      Tohru Minamino, Miki Kinoshita, Yumi Inoue, Yusuke V. Morimoto, Kunio Ihara, Satomi Koya, Noritaka Hara, Noriko Nishioka, Seiji Kojima, Michio Homma & Keiichi Namba.
      Microbiologyopen 2016 Feb 25 doi:10.1002/mbo3.340
    • Identification of a Vibrio cholerae chemoreceptor that senses taurine and amino acids as attractants.
      Nishiyama S, Takahashi Y, Yamamoto K, Suzuki D, Itoh Y, Sumita K, Uchida Y, Homma M, Imada K, Kawagishi I.
      Sci Rep. 2016 Feb 16 ;6:20866. doi: 10.1038/srep20866. PubMed

    2015

    • Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria.
      Ishii E, Chiba S, Hashimoto N, Kojima S, Homma M, Ito K, Akiyama Y, Mori H
      Proc Natl Acad Sci U S A . 112(40):E5513-22(2015 Oct 6) PubMed
    • Bacterial sheet-powered rotation of a micro-object.
      Masaru Kojima,Tatsuya Miyamoto, Masahiro Nakajima, Michio Homma,Tatsuo Arai,Toshio Fukuda.
      Sensors and Actuators B: Chemical 2015 July 21 doi:10.1016/j.snb.2015.07.071 pdf
    • Sodium-driven energy conversion for flagellar rotation of the earliest divergent hyperthermophilic bacterium.
      Takekawa N, Nishiyama M, Kaneseki T, Kanai T, Atomi H, Kojima S, Homma M
      Sci Rep. 2015 Aug 5;5:12711. doi: 10.1038/srep12711 PubMed
    • Effect of FliG three-amino-acids deletion in Vibrio polar-flagellar rotation and formation.
      Onoue Y, Kojima S, Homma M.
      J Biochem. 2015 Jul 3. pii: mvv068. PubMed
    • The MinD homolog FlhG regulates the synthesis of the single polar flagellum of Vibrio alginolyticus.
      Ono H, Takashima A, Hirata H, Homma M, Kojima S.
      Mol Microbiol. 2015 Jun 25. doi: 10.1111/mmi.13109. PubMed
    • FliL associates with the stator to support torque generation of the sodium-driven polar flagellar motor of Vibrio.
      Zhu S, Kumar A, Kojima S, Homma M.
      Mol Microbiol. 2015 Jun 23. doi: 10.1111/mmi.13103.PubMed
    • Functional chimeras of flagellar stator proteins between E. coli MotB and Vibrio PomB at the periplasmic region in Vibrio or E. coli.
      Nishino Y1, Onoue Y, Kojima S, Homma M.
      Microbiologyopen. Volume 4, Issue 2, pages 323−331, April 2015 PubMed
    • Interaction of the C-terminal tail of FliF with FliG from the Na+-driven flagellar motor of Vibrio alginolyticus.
      Ogawa R, Abe-Yoshizumi R, Kishi T, Homma M and Kojima S.
      J Bacteriol. 1;197(1):63-72(2015)PubMed

    2014

    • Hypoxia-induced localization of chemotaxis-related signaling proteins in Vibrio cholerae.
      Hiremath G1, Hyakutake A, Yamamoto K, Ebisawa T, Nakamura T, Nishiyama SI, Homma M and Kawagishi I.
      Mol Microbiol. 2015 Mar;95(5):780-90. PubMed
    • Conformational change in the periplamic region of the flagellar stator coupled with the assembly around the rotor.
      Zhu S, Takao M, Li N, Sakuma M, Nishino Y, Homma M, Kojima S and Imada K.
      Proc Natl Acad Sci USA. 111(37):13523-8(2014) PubMed
    • Hybrid-fuel bacterial flagellar motors in Escherichia coli.
      Sowa Y, Homma M, Ishijima A and Berry RM.
      Proc Natl Acad Sci USA. 111(9):3436-41(2014) PubMed
    • Contribution of many charged residues at the stator-rotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus.
      Takekawa N, Kojima S and Homma M.
      J Bacteriol. 196(7)1377-85(2014) PubMed
    • Construction of functional fragments of the cytoplasmic loop with the C-terminal region of PomA, a stator component of the Vibrio Na+ driven flagellar motor
      Onoue Y1, Abe-Yoshizumi R, Gohara M, Kobayashi S, Nishioka N, Kojima S and Homma M.
      J Biochem. 155(3)207-16(2014) PubMed
    • Biophysical characterization of the C-terminal region of FliG, an essential rotor component of the Na+ driven flagellar motor
      Gohara M, Kobayashi S, Abe-Yoshizumi R, Nonoyama N, Kojima S, Asami Y and Homma M.
      J Biochem. , 155(2)83-9(2014) PubMed

    2013

    • Structure, gene regulation and environmental response of flagella in Vibrio
      Zhu S, Kojima S and Homma M..
      Front. Microbiol. , 4: 410.(2013) PubMed
    • Fluorescence imaging of GFP-fused periplasmic components of Na+-driven flagellar motor using Tat pathway in Vibrio alginolyticus.
      Takekawa N, Kojima S and Homma M.
      J Biochem. , 153(6)547-553(2013) PubMed
    • Mutation in the a-subunit of F1FO-ATPase causes an increased motility phenotype through the sodium-driven flagella of Vibrio
      Terashima H, Terauchi T, Ihara K, Nishioka N, Kojima S and Homma M.
      J Biochem. , 154(2)177-84(2013) PubMed
    • X-ray structure analysis and characterization of AFUEI, an elastase inhibitor from Aspergillus fumigatus.
      Sakuma M, Imada K, Okumura Y, Uchiya KI, Yamashita N, Ogawa K, Hijikata A, Shirai T, Homma M, Nikai T.
      J Biol Chem. , 288(24)17451-17459(2013).PubMed
    • Multiple membrane interactions and versatile vesicle deformations elicited by melittin.
      Takahashi T, Nomura F, Yokoyama Y, Tanaka-Takiguchi Y, Homma M, Takiguchi K.
      J Toxins (Basel). , 17;5(4):637-64(2013) PubMed
    • High Hydrostatic Pressure Induces Counterclockwise to Clockwise Reversals of the Escherichia coli Flagellar Motor.
      Nishiyama M, Sowa Y, Kimura Y, Homma M, Ishijima A and Terazima M.
      J Bacteriol. , 195(8):1809-14(2013) PubMed
    • Na+ conductivity of the Na+-driven flagellar motor complex composed of unplugged wild-type or mutant PomB with PomA.
      Takekawa N, Terauchi T, Morimoto YV, Minamino T, Lo CJ, Kojima S and Homma M.
      J Biochem. , 153(5):441-51(2013)PubMed
    • Large Spectral Change due to Amide Modes of a β-Sheet upon the Formation of an Early Photointermediate of Middle Rhodopsin.
      Furutani Y, Okitsu T, Reissig L, Mizuno M, Homma M, Wada A, Mizutani Y and Sudo Y.
      J Phys Chem B., 117(13):3449-58(2013)PubMed
    • Single cell stiffness measurement at various humidity conditions by nanomanipulation of a nano-needle.
      Shen Y, Nakajima M, Yang Z, Tajima H, Najdovski Z, Homma M and Fukuda T.
      Nanotechnology, 24(14):145703(2013)PubMed
    • Insight into the assembly mechanism in the supramolecular rings of the sodium-driven Vibrio flagellar motor from the structure of FlgT.
      Terashima H, Li N, Sakuma M, Koike M, Kojima S, Homma M and Imada K.
      Proc Natl Acad Sci USA, 110(15):6133-8(2013) PubMed
    • Expression, purification and biochemical characterization of the cytoplasmic loop of PomA, a stator component of the Na+ driven flagellar motor
      Abe-Yoshizumi R, Kobayashi S, Gohara M, Hayashi K, Kojima C, Kojima S, Sudo Y, Asami Y and Homma M.
      BIOPHYSICS , 9:21-29(2013)
    • A Novel dnaJ Family Gene, sflA, Encodes an Inhibitor of Flagellation in Marine Vibrio Species
      Kitaoka M, Nishigaki T, Ihara K, Nishioka N, Kojima S and Homma M.
      J. Bacteriol. , 195(4):816-822(2013) PubMed

    2012

    • Optical silencing of C. elegans cells with arch proton pump.
      Ayako Okazaki, Yuki Sudo, Shin Takagi
      PLoS ONE , 7(5):e35370(2012) PubMed
    • Influence of Halide Binding on the Hydrogen Bonding Network in the Active Site of Salinibacter Sensory Rhodopsin I.
      Louisa Reissig, Tatsuya Iwata, Takashi Kikukawa, Makoto Demura, Naoki Kamo, Hideki Kandori, Yuki Sudo
      Biochemistry , 51(44):8802-13(2012) PubMed
    • Photo-induced Regulation of the Chromatic Adaptive Gene Expression by Anabaena Sensory Rhodopsin.
      Hiroki Irieda, Teppei Morita, Kimika Maki, Michio Homma, Hiroji Aiba, Yuki Sudo
      Journal of Biological Chemistry , 287(39):32485-93(2012) PubMed
    • Intragenic suppressor of a plug deletion nonmotility mutation in PotB, a chimeric stator protein of sodium-driven flagella.
      Shiwei Zhu, Michio Homma, and Seiji Kojima
      J. Bacteriol. , 194(24):6728-6735(2012) PubMed
    • Bacterial Motility Measured by a Miniature Chamber for High-Pressure Microscopy
      Masayoshi Nishiyama and Seiji Kojima
      Int. J. Mol. Sci., 13:9225-9239(2012). PubMed
    • Mlp24 (McpX) of Vibrio cholerae implicated in pathogenicity functions as a chemoreceptor for multiple amino acids
      So-ichiro Nishiyama, Daisuke Suzuki, Yasuaki Itoh, Kazuho Suzuki, Hirotaka Tajima, Akihiro Hyakutake, Michio Homma, Susan Butler-Wu, Andrew Camilli and Ikuro Kawagishi
      INFECTION AND IMMUNITY, 80(9):3170-8(2012). PubMed
    • Mutagenesis of the residues forming an ion binding pocket of the NtpK subunit of Enterococcus hirae V-ATPase
      Miyuki Kawano-Kawada, Tomoko Iwaki, Toshiaki Hosaka, Takeshi Murata, Ichiro Yamato, Michio Homma, and Yoshimi Kakinuma
      J. Bacteriol., 194(17):4546-9(2012). PubMed
    • Absorption Spectra and Photochemical Reactions in a Unique Photoactive Protein, middle Rhodopsin MR.
      Inoue K, Reissig L, Sakai M, Kobayashi S, Homma M, Fujii M, Kandori H & Sudo Y.
      J Phys Chem B., 116(20):5888-99(2012). PubMed
    • Nanofork for Single Cells Adhesion Measurement via ESEM-Nanomanipulator System.
      Ahmad MR, Nakajima M, Kojima M, Kojima S, Homma, M &Fukuda T.
      IEEE Trans Nanobioscience., 11(1):70-8(2012). PubMed
    • Characterization of PomA mutants defective in the functional assembly of the Na+ -driven flagellar motor in Vibrio alginolyticus
      Norihiro Takekawa, Na Li, Seiji Kojima, & Michio Homma
      J. Bacteriol., 194(8):1934-9 (2012). PubMed

    2011

    • Evaluation of the single yeast cell's adhesion to ITO substrates with various surface energies via ESEM nanorobotic manipulation system.
      Shen Y, Ahmad MR, Nakajima M, Kojima S, Homma M & Fukuda T.
      IEEE Trans Nanobioscience., 10(4):217-24 (2011) PubMed
    • M153R mutation in a pH-sensitive green fluorescent protein stabilizes its fusion proteins.
      Morimoto YV, Kojima S, Namba K, & Minamino T.
      PLoS One., 3;6(5):e19598 (2011) PubMed
    • Mutations targeting the C-terminal domain of FliG can disrupt motor assembly in the Na+-driven flagella of Vibrio alginolyticus.
      Kojima S, Nonoyama N, Takekawa N, Fukuoka H, &Homma M.
      J Mol Biol. , 414:62-74 (2011)
    • Characterization of the flagellar motor composed of functional GFP-fusion derivatives of FliG in the Na+-driven polar flagellum of Vibrio alginolyticus
      Masafumi Koike, Noriko Nishioka, Seiji Kojima, & Michio Homma
      BIOPHYSICS, 7:59-67 (2011)
    • Ligand specificity determined by differentially arranged common ligand-binding residues in the bacterial amino acid chemoreceptors Tsr and Tar.
      Tajima H, Imada K, Sakuma M, Hattori F, Nara T, Kamo N, Homma M, & Kawagishi I.
      J Biol Chem., 286(49):42200-10(2011) PubMed
    • Sodium-driven motor of the polar flagellum in marine bacteria Vibrio.
      Li N, Kojima S, & Homma M.
      Genes Cells., 16(10):985-99(2011). PubMed
    • Transformation of ActoHMM Assembly Confined in Cell-Sized Liposome.
      Takiguchi K, Negishi M, Tanaka-Takiguchi Y, Homma M, & Yoshikawa K.
      Langmuir., 27(18):11528-35(2011).PubMed
    • Effect of ambient humidity on the strength of the adhesion force of single yeast cell inside environmental-SEM.
      Shen Y, Nakajima M, Ahmad MR, Kojima S, Homma M, & Fukuda T.
      Ultramicroscopy., 111(8):1176-83(2011).PubMed
    • Structure of the flagellar motor protein complex PomAB: implications for the torque-generating conformation.
      Yonekura K, Maki-Yonekura S, & Homma M.
      J Bacteriol. , 193(15):3863-70(2011). PubMed
    • A conserved residue, PomB-F22, in the transmembrane segment of the flagellar stator complex, has a critical role in conducting ions and generating torque.
      Terauchi T, Terashima H, Kojima S, & Homma M.
      Microbiology., 157(Pt 8):2422-32(2011). PubMed
    • Significance of the glutamate-139 residue of the V-type Na+-ATPase NtpK subunit in catalytic turnover linked with salt tolerance of Enterococcus hirae.
      TKawano-Kawada M, Takahashi H, Igarashi K, Murata T, Yamato I, Homma M, & Kakinuma Y.
      J Bacteriol., Jul;193(14):3657-61(2011). PubMed
    • Characterization of the periplasmic region of PomB, a Na+-driven flagellar stator protein in Vibrio alginolyticus.
      Li N, Kojima S, & Homma M.
      J Bacteriol., Aug;193(15):3773-84(2011). PubMed
    • Study of the time effect on the strength of cell-cell adhesion force by a novel nano-picker.
      Shen Y, Nakajima M, Kojima S, Homma M,& Fukuda T.
      Biochem Biophys Res Commun. , 409(2):160-5(2011).PubMed
    • Design and characterization of nanoknife with buffering beam for in situ single-cell cutting.
      Shen Y, Nakajima M, Yang Z, Kojima S, Homma M, & Fukuda T.
      Nanotechnology, 22(30):305701 (2011) PubMed
    • Structural characteristics around the β-ionone ring of the retinal chromophore in salinibacter sensory rhodopsin I
      Irieda H, Reissig L, Kawanabe K, Homma M, Kandori H, & Sudo Y
      Biochemistry, 50(22):4912-22 (2011) PubMed
    • Spectrally Silent Intermediates during the Photochemical Reactions of Salinibacter Sensory Rhodopsin I.
      Inoue K, Sudo Y, Homma M, & Kandori H.
      J Phys Chem B., 115(15):4500-8 (2011) PubMed
    • Direct Observation of the Structural Change of Tyr174 in the Primary Reaction of Sensory Rhodopsin II.
      Mizuno M, Sudo Y, Homma M, & Mizutani Y..
      Biochemistry, 50(15):3170-80 (2011) PubMed
    • Spectral tuning in sensory rhodopsin I from Salinibacter ruber.
      Sudo Y, Yuasa Y, Shibata J, Suzuki D, & Homma M.
      J Biol Chem., 286(13):11328-36 (2011) PubMed
    • A Microbial Rhodopsin with a Unique Retinal Composition Shows Both Sensory Rhodopsin II and Bacteriorhodopsin-like Properties.
      Sudo Y, Ihara K, Kobayashi S, Suzuki D, Irieda H, Kikukawa T, Kandori H, & Homma M.
      J Biol Chem. 50(15):3170-80 (2011) PubMed
    • Conversion of mono-polar to peritrichous flagellation in Vibrio alginolyticus.
      Kojima M, Nishioka N, Kusumoto A, Yagasaki J, Fukuda T, & Homma M.
      Microbiol Immunol 55(2): 76-83. (2011) PubMed
    • Zernike Phase Contrast Cryo-electron Tomography of Sodium-driven Flagellar Hook-basal Bodies from Vibrio alginolyticus
      Naoki Hosogi; Hideki Shigematsu; Hiroyuki Terashima; Michio Homma; Kuniaki Nagayama
      Journal of Structural Biology, 173: 67-76 (2011) PubMed

    2010

    • Protein-protein interaction changes in an archaeal light-signal transduction.
      Kandori H, Sudo Y & Furutani Y.
      J. Biomed. Biotechnol., 2010:424760 (2010) PubMed
    • The flagellar basal body-associated protein FlgT is essential for a novel ring structure in the sodium-driven Vibrio motor.
      Terashima, H., Koike, M., Kojima, S. & Homma, M.
      J. Bacteriol.,192(21):5609-15. (2010)PubMed
    • Quantitative Evaluation of Injected Molecules into Phospholipid-coated Micro-droplets for In-situ
      Masahiro Nakajima,Yuta Matsuno,Masaru Kojima,Yohko Tanaka-Takiguchi, Kingo Takiguchi,Kousuke Nogawa,Michio Homma,and Toshio Fukuda
      Journal of Robotics and Mechatronics, 22(5):651-658 (2010)
    • Nanoindentation methods to measure viscoelastic properties of single cells using sharp, flat, and buckling tips inside ESEM.
      Ahmad MR, Nakajima M, Kojima S, Homma M, Fukuda T.
      IEEE Trans Nanobioscience.9(1):12-23.(2010) PubMed
    • Disulphide cross-linking between the stator and the bearing components in the bacterial flagellar motor.
      Hizukuri, Y., Kojima, S.& Homma, M.
      J Biochem. 148(3): 309-18 (2010) PubMed
    • Review: Phototactic and Chemotactic Signal Transduction by Transmembrane Receptors and Transducers in Microorganisms.
      Suzuki, D., Irieda, H., Homma, M., Kawagishi, I. & Sudo, Y.
      Sensors 10(4): 4010-4039. (2010)
    • Functional transfer of an essential aspartate for the ion binding site in the stator proteins of the bacterial flagellar motor.
      Terashima, H., Kojima, S. & Homma, M.
      J. Mol. Biol. 397(3): 689-696. (2010) PubMed
    • Spectroscopic studies of a sensory rhodopsin I homolog from the archaeon Haloarcula vallismortis.
      Yagasaki, J., Suzuki, D., Ihara, K., Inoue, K., Kikukawa, T., Sakai, M., Fujii, M., Homma, M., Kandori, H. & Sudo, Y.
      Biochemistry 49(6): 1183-1190. (2010) PubMed
    • Isolation of basal bodies with C-ring components from the Na+-driven flagellar motor of Vibrio alginolyticus.
      Koike, M., Terashima, H., Kojima, S. & Homma, M.
      J. Bacteriol. 192(1): 375-378. (2010) PubMed

    2009

    • Rotational speed control of Na+-driven flagellar motor by dual pipettes.
      Nogawa, K., Kojima, M., Nakajima, M., Kojima, S., Homma, M. & Fukuda, T.
      IEEE Trans Nanobioscience. 8(4):341-348. (2009) PubMed
    • Interaction between Na+ ion and carboxylates of the PomA-PomB stator unit studied by ATR-FTIR spectroscopy.
      Sudo, Y., Kitade, Y., Furutani, Y., Kojima, M., Kojima, S., Homma, M. & Kandori, H.
      Biochemistry,48(49): 11699-11705. (2009) PubMed
    • Rotational speed control of Na+-driven flagellar motor by dual pipettes.
      Nogawa K, Kojima M, Nakajima M, Kojima S, Homma M, Fukuda T.
      IEEE Trans Nanobioscience,8: 341-348. (2009) PubMed
    • Tributyltin sensitivity of vacuolar-type Na+-transporting ATPase from Enterococcus hirae.
      Chardwiriyapreecha, S., Inoue, T., Sugimoto, N., Sekito, T., Yamato, I., Murata, T., Homma, M., & Kakinuma, Y.
      J. Toxicol. Sci.34(5): 575-579. (2009) PubMed
    • Characterization of a signaling complex composed of sensory rhodopsin I and its cognate transducer protein from the eubacterium Salinibacter ruber.
      Sudo, Y., Okada, A., Suzuki, D., Inoue, K., Irieda, H., Sakai, M., Fujii, M., Furutani, Y., Kandori, H., & Homma, M.
      Biochemistry, 48(42): 10136-10145. (2009) PubMed
    • Dynamic behavior of giant liposomes at desired osmotic pressures.
      Ohno, M., Hamada, T., Takiguchi, K. & Homma, M.
      Langmuir, 25(19): 11680-11685. (2009) PubMed
    • Effects of Chloride Ion Binding on the Photochemical Properties of Salinibacter Sensory Rhodopsin I.
      Suzuki, D., Furutani, Y., Inoue, K., Kikukawa, T., Sakai, M., Fujii, M., Kandori, H., Homma, M. & Sudo, Y.
      J. Mol. Biol. 392(1): 48-62. (2009) PubMed
    • Mutational analysis of the GTP-binding motif of FlhF which regulates the number and placement of the polar flagellum in Vibrio alginolyticus.
      Kusumoto, A., Nishioka, N., Kojima, S. & Homma, M.
      J. Biochem. 146(5): 643-650. (2009) PubMed
    • Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB.
      Kojima, S., Imada, K., Sakuma, M., Sudo, Y., Kojima, C., Minamino, T., Homma, M. & Namba, K.
      Mol. Microbiol. 73(4): 710-718. (2009) PubMed
    • Comparative study of the ion flux pathway in stator units of proton- and sodium-driven flagellar motors.
      Sudo, Y., Terashima, H., Abe-Yoshizumi, R., Kojima, S. & Homma, M.
      Biophysics
      ,.5: 45-52. (2009)
    • The peptidoglycan-binding (PGB) domain of the Escherichia coli Pal protein can also function as the PGB domain in E. coli flagellar motor protein MotB.
      Hizukuri, Y., Morton, J.F., Yakushi, T., Kojima, S. & Homma, M.
      J. Biochem.146
      (2):219-229. (2009) PubMed
    • Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors.
      Fukuoka, H., Wada, T., Kojima, S., Ishijima, A. & Homma, M.
      Mol. Microbiol.71(4): 825-835. (2009) pdf PubMed

    2008

    • A photochromic photoreceptor from a eubacterium.
      Suzuki, D., Kitajima-Ihara, T., Furutani, Y., Ihara, K., Kandori, H., Homma, M. & Sudo, Y.
      Commun Integr Biol. 1(2):150-152. (2008) PubMed
    • Flagellar motility in bacteria structure and function of flagellar motor.
      Terashima, H., Kojima, S. & Homma, M.
      Int. Rev. Cell. Mol. Biol.270:39-85. Review. (2008) pdf PubMed
    • Structural Changes of Salinibacter Sensory Rhodopsin I upon Formation of the K and M Photointermediates.
      Suzuki, D., Sudo, Y., Furutani, Y., Takahashi, H., Homma, M. & Kandori, H.
      Biochemistry,47(48): 12750-12759. (2008) pdf PubMed
    • Cell-free synthesis of the torque-generating membrane proteins, PomA and PomB, of the Na+-driven flagellar motor in Vibrio alginolyticus.
      Terashima, H., Abe-Yoshizumi, R., Kojima, S. & Homma, M.
      J. Biochem.144(5):635-642. (2008) pdf PubMed
    • The Effects of Cell Sizes, Environmental Conditions, and Growth Phases on the Strength of Individual W303 Yeast Cells Inside ESEM.
      Ahmad, M.R., Nakajima, M., Kojima, S., Homma, M. & Fukuda, T.
      IEEE Transactions on Nanobioscience, 7(3): 185-193. (2008) pdf PubMed
    • Salinibacter sensory rhodopsin: Sensory rhodopsin I-like protein from a eubacterium.
      Kitajima-Ihara, T., Furutani, Y., Suzuki, D., Ihara, K., Kandori, H., Homma, M. & Sudo, Y.
      J. Biol. Chem.283(35): 23533-23541. (2008) pdf PubMed
    • Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY.
      Kojima, S., Shinohara, A., Terashima, H., Yakushi, T., Sakuma, M., Homma, M., Namba, K. & Imada, K.
      Proc. Nat.l Acad. Sci. USA. 105(22): 7696-7701. (2008) pdf PubMed
    • Steric Constraint in the Primary Photoproduct of Sensory Rhodopsin II Is a Prerequisite for Light-Signal Transfer to HtrII.
      Ito, M., Sudo, Y., Furutani, Y., Okitsu, T., Wada, A., Homma, M., Spudich, J.L. & Kandori, H.
      Biochemistry, 47(23): 6208-6215. (2008) pdf PubMed
    • Roles of charged residues in the C-terminal region of PomA, a stator component of the Na+-driven flagellar motor.
      Obara, M., Yakushi, T., Kojima, S. & Homma, M.
      J. Bacteriol. 190(10): 3565-3571. (2008) pdf PubMed
    • Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus.
      Kusumoto, A., Shinohara, A., Terashima, H., Kojima, S., Yakushi, T. & Homma, M.
      Microbiology,154(5): 1390-1399. (2008) pdf PubMed
    • Systematic Cys mutagenesis of Flgl, the flagellar P-ring component of Escherichia coli.
      Hizukuri, Y., Kojima, S., Yakushi, T., Kawagishi, I. & Homma, M.
      Microbiology, 154(3): 810-817. (2008) pdf PubMed
    • Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli.
      Inoue, Y., Lo, C.J., Fukuoka, H., Takahashi, H., Sowa, Y., Pilizota, T., Wadhams, G.H.,
      Homma, M., Berry, R.M. & Ishijima, A.
      J. Mol. Biol.376(5): 1251-1259. (2008) pdf PubMed

    2007

    • Crystallization and preliminary X-ray analysis of MotY, a stator component of the Vibrio alginolyticus polar flagellar motor.
      Shinohara, A., Sakuma, M., Yakushi, T., Kojima, S., Namba, K., Homma, M. & Imada, K.
      Acta. Cryst. 63(2): 89-92. (2007) pdf PubMed
    • Visualization of functional rotor proteins of the bacterial flagellar motor in the cell membrane.
      Fukuoka, H., Sowa, Y., Kojima, S., Ishijima, A. & Homma, M.
      J. Mol. Biol.367(3): 692-701. (2007) pdf PubMed
    • The bidirectional polar and unidirectional lateral flagellar motors of Vibrio alginolyticus are controlled by a single CheY species.
      Kojima, M., Kubo, R., Yakushi, T., Homma, M. & Kawagishi, I.
      Mol. Micro. 64(1): 57-67. (2007) pdf PubMed

    2006

    • The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+-driven flagella and required for stator formation.
      Terashima, H., Fukuoka, H., Yakushi, T., Kojima, S. & Homma, M.
      Mol. Micro.62(4): 1170-1180. (2006) pdf PubMed
    • Control of chemotactic signal gain via modulation of a pre-formed receptor array.
      Irieda, H., Homma, M., Homma, M. & Kawagishi, I.
      J. Biol. Chem.281(33): 23880-23886. (2006) pdf PubMed
    • Roles of the intramolecular disulfide bridge in MotX and MotY, the specific proteins for sodium-driven motors in Vibrio spp.
      Yagasaki, J., Okabe, M., Kurebayashi, R., Yakushi, T. & Homma, M.
      J. Bacteriol.188(14): 5308-5314. (2006) pdf PubMed
    • Role of the intramolecular disulfide bond in FlgI, the flagellar P-ring component of Escherichia coli.
      Hizukuri, Y., Yakushi T., Kawagishi I. & Homma, M.
      J. Bacteriol.188(12): 4190-4197. (2006) pdf PubMed
    • Helical distribution of the bacterial chemoreceptor via co-localization with the Sec protein translocation machinery.
      Shiomi, D., Yoshimoto, M., Homma, M. & Kawagishi, I.
      Mol. Micro.60(4): 894-906. (2006) pdf PubMed
    • Electron cryomicroscopic visualization of PomA/B stator units of the sodium-driven flagellar motor in liposomes.
      Yonekura, K., Yakushi, T., Atsumi, T., Maki-Yonekura, S., Homma, M. & Namba, K.
      J. Mol. Biol.357: 73-81. (2006) pdf PubMed
    • Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and N+-driven motors in Escherichia coli.
      Yakushi, T., Yang, J., Fukuoka, H., Homma, M. & Blair D. F.
      J. Bacteriol.188(4): 1466-1472. (2006) pdf PubMed
    • Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus.
      Kusumoto, A., Kamisaka, K., Yakushi, T., Terashima, H., Shinohara, A. & Homma, M.
      J. Biochem. (Tokyo) 139(1): 113-121. (2006) pdf PubMed

    2005

    • Only one of the five CheY homologs in Vibrio cholerae directly switches flagellar rotation.
      Hyakutake, A., Homma, M., Austin, M. J., Boin, M. A., Hase, C. C. & Kawagishi, I.
      J. Bacteriol.187(24): 8403-8410. (2005) pdf PubMed
    • Direct observation of steps in rotation of the bacterial flagellar motor.
      Sowa Y., Rowe, A.D., Leake, M.C., Yakushi, T., Homma, M., Ishijima, A. & Berry, R.M.
      Nature, 437(7060): 916-919. (2005) pdf PubMed
    • Stabilization of polar localization of a chemoreceptor via its covalent modifications and its communication with a different chemoreceptor.
      Shiomi, D., Banno, S., Homma, M. & Kawagishi, I.
      J. Bacteriol.187(22): 7647-7654. (2005) pdf PubMed
    • Assembly of motor proteins, PomA and PomB, in the Na+-driven stator of the flagellar motor.
      Fukuoka, H., Yakushi, T., Kusumoto, A. & Homma, M.
      J. Mol. Biol.351(4): 707-717. (2005) pdf PubMed
    • Interactions of MotX with MotY and with the PomA/PomB sodium ion channel complex of the Vibrio alginolyticus polar flagellum.
      Okabe, M., Yakushi, T. & Homma, M.
      J. Biol. Chem. 280(27): 25659-25664. (2005) pdf PubMed
    • Deletion analysis of the carboxyl-terminal region of the PomB component of the Vibrio alginolyticus polar flagellar motor.
      Yakushi, T., Hattori, N. & Homma, M.
      J. Bacteriol.187(2): 778-784. (2005) pdf PubMed

    2004

    • Concerted effects of amino acid substitutions in conserved charged residues and other residues in the cytoplasmic domain of PomA, a stator component of Na+-driven flagella.
      Fukuoka, H., Yakushi, T. & Homma, M.
      J. Bacteriol. 186(20): 6749-6758. (2004) pdf PubMed
    • Interaction of PomB with the third transmembrane segment of PomA in the Na+-driven polar flagellum of Vibrio alginolyticus.
      Yakushi, T., Maki, S. & Homma, M.
      J. Bacteriol. 186(16): 5281-5291. (2004) pdf PubMed
    • Targeting of the chemotaxis methylesterase/deamidase CheB to the polar receptor-kinase cluster in an Escherichia coli cell.
      Banno, S., Shiomi, D., Homma, M. & Kawagishi, I.
      Mol. Microbiol. 53(4): 1051-1063. (2004) pdf PubMed
    • Attractant binding alters arrangement of chemoreceptor dimers within its cluster at a cell pole.
      Homma, M., Shiomi, D., Homma, M. & Kawagishi, I.
      Proc. Natl. Acad. Sci. USA 101(10): 3462-3467. (2004) pdf PubMed
    • Isolation of Vibrio alginolyticus sodium-driven flagellar motor complex composed of PomA and PomB solubilized by sucrose monocaprate.
      Yakushi, T., Kojima, M. & Homma, M.
      Microbiology,150(4): 911-920. (2004) pdf PubMed
    • Multimeric structure of the PomA/PomB channel complex in the Na+-driven flagellar motor of Vibrio alginolyticus.
      Yorimitsu, T., Kojima, M., Yakukshi, T. & Homma, M.
      J. Biochem. 135(1): 43-51. (2004) PubMed

    2003

    • The conserved charged residues of the C-terminal region of FliG, a rotor component of Na+-driven flagellar motor.
      Yorimitsu, T., Mimaki, A., Yakushi, T. & Homma, M.
      J. Mol. Biol.334(3): 567-83. (2003) pdf PubMed
    • Flagellum-independent trail formation of Escherichia coli on semi-solid agar.
      Fukuoka, H., Homma, M. & Ichihara, S.
      Biosci. Biotechnol. Biochem. 67(8): 1802-1805. (2003) pdf PubMed
    • Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus.
      Sowa, Y., Hotta, H., Homma, M. & Ishijima, A.
      J. Mol. Biol.327(5): 1043-1051. (2003) pdf PubMed
    • Ion-coupling determinants of Na+-driven and H+-driven flagellar motors.
      Asai, Y., Yakushi, T., Kawagishi, I. & Homma, M.
      J. Mol. Biol.327(2): 453-463. (2003) pdf PubMed

    2002

    • Dual recognition of the bacterial chemoreceptor by chemotaxis-specific domains of the CheR methyltransferase.
      Shiomi, D., Zhulin, I. B., Homma, M. & Kawagishi, I.
      J. Biol. Chem. 277(44): 42325-42333. (2002) pdf PubMed
    • MotX and MotY, specific components of the sodium-driven flagellar motor, colocalize to the outer membrane in Vibrio alginolyticus.
      Okabe, M., Yakushi, T., Kojima, M. & Homma, M.
      Mol. Microbiol. 46(1): 125-134. (2002) pdf PubMed
    • Intragenic suppressors of a mutation in the aspartate chemoreceptor gene that abolishes binding of the receptor to methyltransferase.
      Shiomi, D., Homma, M. & Kawagishi, I.
      Microbiology, 148: 3265-3275. (2002) pdf PubMed
    • The systematic substitutions around the conserved charged residues of the cytoplasmic loop of Na+-driven flagellar motor component PomA.
      Yorimitsu, T., Sowa, Y., Ishijima, A., Yakushi, T. & Homma, M.
      J. Mol. Biol. 320(2): 403-413. (2002) pdf PubMed
    • Sensing of cytoplasmic pH by bacterial chemoreceptors involves the linker region that connects the membrane-spanning and the signal-modulating helices.
      Umemura, T., Matsumoto, Y., Ohnishi, K., Homma, M. & Kawagishi, I.
      J. Biol. Chem.277(2): 1593-1598. (2002) pdf PubMed

    2001

    • Cloning and characterization of motX, a Vibrio alginolyticus sodium-driven flagellar motor gene.
      Okabe, M., Yakushi, T., Asai, Y. & Homma, M.
      J. Biochem. 130(6): 879-884. (2001) pdf
    • Na+-driven flagellar motor of Vibrio.
      Yorimitsu, T. & Homma, M.
      Biochim Biophys Acta. 1505: 82-93. (2001) pdf

    2000

    • Intermolecular cross-linking between the periplasmic loop3-4 regions of PomA, a component of the Na+-driven flagellar motor of Vibrio alginolyticus.
      Yorimitsu, T., Sato, K., Asai, Y. & Homma, M.
      J. Biol. Chem. 275(40): 31387-31391. (2000) pdf
    • Coupling ion specificity of chimeras between H+- and Na+-driven motor proteins, MotB and PomB, in Vibrio polar flagella.
      Asai, Y., Kawagishi, I., Sockett, R. E. & Homma, M.
      EMBO J.19(14): 3639-3648. (2000) pdf
    • Multimeric structure of PomA, a component of the Na+-driven polar flagellar motor of Vibrio alginolytiucs.
      Sato, K. & Homma, M.
      J. Biol. Chem. 275(26): 20223-20228. (2000) pdf
    • A slow-motilty phenotype caused by substitutions at residue Asp31 in the PomA channel component of a sodium-driven flagellar motor.
      Kojima, S., Shoji, T., Asai, Y., Kawagishi, I. & Homma, M.
      J. Bacteriol. 182(11): 3314-3318. (2000) pdf
    • The Epstein-Barr virus pol catalytic subunit physically interacts with the BBLF4-BSLF1-BBLF2/3 complex.
      Fujii, K., Yokoyama, N., Kiyono, T., Kuzushima, K., Homma, M., Nishiyama, Y., Fujita, M. & Tsurumi, T.
      J. Virol.74(6): 2550-2557. (2000)
    • Mutational analysis of ligand recognition by tcp, the citrate chemoreceptor of Salmonella enterica serovar typhimurium.
      Iwama, T., Nakao, K. I., Nakazato, H., Yamagata, S., Homma, M. & Kawagishi, I.
      J. Bacteriol.182(5): 1437-1441. (2000) pdf
    • The aspartate chemoreceptor Tar is effectively methylated by binding to the methyltransferase mainly through hydrophobic interaction.
      Shiomi, D., Okumura, H., Homma, M. & Kawagishi, I.
      Mol. Microbiol.. 36(1): 132-140. (2000)
    • Functional reconstitution of the Na+-driven polar flagellar motor component of Vibrio alginolyticus.
      Sato, K. & Homma, M.
      J. Biol. Chem.275: 5718-5722. (2000) pdf
    • Characterization of a flagellar sheath component , PF60, and its structural gene in marine Vibrio.
      Furuno, M., Sato, K., Kawagishi, I. & Homma, M.
      J. Biochem. (Tokyo). 127: 29-36. (2000)
    • Cysteine-scanning mutagenesis of the periplasmic loop regions of PomA, a putative channel component of the sodium-driven flagellar motor in Vibrio alginolyticus.
      Asai, Y., Syoji, T., Kawagishi, I. & Homma, M.
      J. Bacteriol.182(4): 1001-1007. (2000) pdf

    1999

    • Random mutagenesis of the pomA gene encoding a putative channel component of the Na+-driven polar flagellar motor of Vibrio alginolyticus.
      Kojima, S., Kuroda, M., Kawagishi, I. & Homma, M
      Microbiology,145: 1759-1767. (1999) pdf
    • Hybrid Motor with H+-and Na+-driven components can rotate Vibrio polar flagella by using sodium ions.
      Asai, Y., Kawagishi, I., Sockett, R. E. & Homma, M.
      J. Bacteriol.181(20): 6332-6338. (1999) pdf
    • Conversion of a bacterial warm sensor to a cold sensor by methylation of a single residue in the presence of an attractant.
      Nishiyama, S. I., Umemura, T., Nara, T., Homma, M. & Kawagishi, I.
      Mol Microbiol. 32(2): 357-365. (1999)
    • Inversion of thermosensing property of the bacterial receptor Tar by mutations in the second transmembrane region.
      Nishiyama, S., Maruyama, I. N., Homma, M. & Kawagishi, I.
      J. Mol. Biol. 286(5): 1275-1284. (1999) pdf
    • Na+-driven flagellar motor resistant to phenamil, an amiloride analog, caused by mutations in putative channel components.
      Kojima, S., Asai, Y., Atsumi, T., Kawagishi, I. & Homma, M.
      J. Mol. Biol. 285(4): 1537-1547. (1999) pdf
    • Functional interaction between PomA and PomB, the Na+-driven flagellar motor components of Vibrio alginolyticus.
      Yorimitsu, T., Sato, K., Asai, Y., Kawagishi, I. & Homma, M.
      J. Bacteriol. 181(16): 5103-5106. (1999) pdf
    • The polar flagellar motor of Vibrio cholerae is driven by an Na+motive force.
      Kojima, S., Yamamoto, K., Kawagishi, I. & Homma, M.
      J. Bacteriol. 181: 1927-1930. (1999) pdf
    • Suppression by the DNA fragment of the motX promoter region on long flagellar mutants of Vibrio alginolitycus.
      Furuno, M., Nishioka, N., Kawagishi, I. & Homma, M.
      Microbiol. Immunol.43(1): 39-43. (1999)

    1998

    • Flagellin-containing membrane vesicles excreted from Vibrio alginolyticus mutants lacking a polar-flagellar filament.
      Nishioka, N., Furuno, M., Kawagishi, I. & Homma, M.
      J. Biochem. (Tokyo)123: 1169-1173. (1998)
    • Chemotactic adaptation is altered by changes in the carboxy-terminal sequence conserved among the major methyl-accepting chemoreceptors.
      Okumura, H., Nishiyama, S., Sasaki, A., Homma, M. & Kawagishi, I.
      J. Bacteriol. 180: 1862-1868. (1998) pdf
    • Intersubunit interaction between transmembrane helices of the bacterial aspartate chemoreceptor homodimer.
      Umemura, T., Tatsuno, I., Shibasaki, M., Homma, M. & Kawagishi, I.
      J. Biol. Chem.273: 30110-30115. (1998) pdf

    1997

    • Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium.
      Asai, Y., Kojima, S., Kato, H., Nishioka, N., Kawagishi, I. & Homma, M.
      J. Bacteriol.179: 5104-5110. (1997) pdf
    • Characterization of the polar-flagellar length mutants in Vibrio alginolitycus.
      Furuno, M., Atsumi, T., Kojima, S., Nishioka, N., Kawagishi, I. & Homma, M.
      Microbiology,143: 1615-1621. (1997)
    • Uncoupling of ligand-binding affinity of the bacterial serine chemoreceptor from methylation- and temperature modulated signaling states.
      Iwama, T., Homma, M. & Kawagishi, I.
      J. Biol. Chem.272: 13810-13815. (1997) pdf
    • Cloning of a Vibrio alginolyticus rpoN gene that is required for polar flagellar formation.
      Kawagishi, I., Nakada, M., Nishioka, N. & Homma, M.
      J. Bacteriol.179: 6851-6854. (1997) pdf
    • Vibrio alginolyticus mutants resistant to phenamil, a specific inhibitor of the sodium-driven flagellar motor.
      Kojima, S., Atsumi, T., Muramoto, K., Kudo, S., Kawagishi, I. & Homma, M.
      J. Mol. Biol. 265: 310-318. (1997) pdf
    • Thermosensing properties of mutant aspartate chemoreceptors with methyl-accepting sites replaced singly or multiply by alanine.
      Nishiyama, S., Nara, T., Homma, M., Imae, Y. & Kawagishi, I.
      J. Bacteriol.179: 6573-6580. (1997) pdf

    1996

    • Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolitycus.
      Atsumi, T., Maekawa, Y., Yamada, T., Kawagishi, I., Imae, Y. & Homma, M.
      J. Bacteriol.178: 5024-5026. (1996) pdf
    • Chemotactic responses to an attractant and a repellent by the polar and lateral flagellar systems of Vibrio alginolyticus.
      Homma, M., Oota, H., Kojima, S., Kawagishi, I. & Imae, Y.
      Microbiology,142: 2777-2783. (1996)
    • Characterization of the flagellar hook length control protein FliK of Salmonella typhimurium and Escherichia coli.
      Kawagishi, I., Homma, M., Williams, A. & Macnab, R. M.
      J. Bacteriol.178: 2954-2959. (1996) pdf
    • The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression.
      Kawagishi, I., Imagawa, M., Imae, Y., McCarter, L. & Homma, M.
      Mol. Microbiol. 20: 693-699. (1996)
    • Rotational fluctuation of sodium-driven flagellar motor of Vibrio alginolyticus induced by binding of inhibitors.
      Muramoto, K., Magariyama, Y., Homma, M., Kawagishi, I., Sugiyama, S., Imae, Y. & Kudo, S.
      J. Mol. Biol.259: 687-695.(1996) pdf
    • Modulation of the thermosensing profile of the Escherichia coli aspartate receptor tar by covalent modification of its methyl-accepting sites.
      Nara, T., Kawagishi, I., Nishiyama, S., Homma, M. & Imae, Y.
      J. Biol. Chem. 271: 17932-17936. (1996) pdf
    • Cloning and characterization of motY, a gene coding for a component of the sodium-driven flagellar motor in Vibrio alginolyticus.
      Okunishi, I., Kawagishi, I. & Homma, M.
      J. Bacteriol. 178: 2409-2415. (1996) pdf
    • Signaling by the Escherichia coli aspartate chemoreceptor Tar with a single cytoplasmic domain per dimer.
      Tatsuno, I., Homma, M., Oosawa, K. & Kawagishi, I.
      Science,274: 423-425. (1996)

    1995

    • In vivo sulfhydryl modification of the ligand-binding site of Tsr, the Escherichia coli serine chemoreceptor.
      Iwama, T., Kawagishi, I., Gomi, S., Homma, M. & Imae, Y.
      J. Bacteriol. 177: 2218-2221. (1995) pdf
    • Isolation of the polar and lateral flagellum-defective mutants in Vibrio alginolyticus and identification of their flagellar driving energy sources.
      Kawagishi, I., Maekawa, Y., Atsumi, T., Homma, M. & Imae, Y.
      J. Bacteriol.177: 5158-5160. (1995) pdf
    • High-speed rotation and speed stability of the sodium-driven flagellar motor in Vibrio alginolyticus.
      Muramoto, K., Kawagishi, I., Kudo, S., Magariyama, Y., Imae, Y. & Homma, M.
      J. Mol. Biol. 251: 50-58. (1995)

    1994

    • Removal of the periplasmic DNase before electroporation enhances efficiency of transformation in a marine bacterium Vibrio alginolyticus.
      Kawagishi, I., Okunishi, I., Homma, M. & Imae, Y.
      Microbiology, 140: 2355-2361. (1994)
    • Transmembrane signaling by the chimeric chemosensory receptors of Escherichis coli Tsr and Tar with heterologous membrane-spanning regions.
      Tatsuno, I., Lee, L., Kawagishi, I., Homma, M. & Imae, Y.
      Mol. Microbiol.14: 755-762. (1994)
Copyright© Group of Biomembrane Functions. All rights reserved.