トップ構成員>小嶋誠司

小嶋誠司(Seiji Kojima)

研究課題 細菌べん毛モーターのエネルギー変換機構  
職名 教授
小嶋誠司助教
生年月日 1970年8月
学位 理学博士
最終学歴 名古屋大学
大学院理学研究科
(1999)
専門分野 生化学
細菌学
生物物理学
所属学会 日本生化学会
日本生物物理学会
日本細菌学会
日本分子生物学会
ホームページ
連絡先 z47616acc.nagoya-u.ac.jp
受賞歴 日本細菌学会 小林六造記念賞(平成28年)

欧文論文リスト

*は小嶋がcorresponding authorの論文

2022

  • Formation of multiple flagella caused by a mutation of the flagellar rotor protein FliM in Vibrio alginolyticus.
    Homma M, Takekawa N,Fujiwara K,Hao Y,Onoue Y,Kojima, S.
    Genes Cells (2022) 27:568-578. doi: 10.1111/gtc.12975 PubMed
  • Functional analysis of the N-terminal region of Vibrio FlhG, a MinD-type ATPase in flagellar number control.
    Homma M,Mizuno A,Hao Y,Kojima S.
    J. Biochem. (2022) 172:99-107. doi: doi:10.1093/jb/mvac047 PubMed
  • The periplasmic domain of the ion-conducting stator of bacterial flagella regulates force generation.
    Homma M and Kojima S.
    Front. Microbiol. (2022) 13:869187. doi: 10.3389/fmicb.2022.869187 (April 27) PubMed
  • Mutations in the stator protein PomA affect switching of rotational direction in bacterial flagellar motor
    Terashima H, Hori K, Ihara K, Homma M, Kojima S.
    Sci Rep. 2022 Feb 22;12(1):2979. doi: 10.1038/s41598-022-06947-5.PMID: 35194097 PubMed
  • Roles of the second messenger c-di-GMP in bacteria: Focusing on the topics of flagellar regulation and Vibrio spp
    Homma M, Kojima S.
    Genes Cells.2022 Jan 24. doi: 10.1111/gtc.12921. Online ahead of print.PMID: 35073606 Review. PubMed
  • Hoop-like role of the cytosolic interface helix in Vibrio PomA, an ion-conducting membrane protein, in the bacterial flagellar motor
    Nishikino T, Sagara Y, Terashima H, Homma M, Kojima S.
    J Biochem. 2022 Jan 6:mvac001. doi: 10.1093/jb/mvac001. Online ahead of print.PMID: 35015887 PubMed
  •  

    2021

    • ZomB is essential for chemotaxis of Vibrio alginolyticus by the rotational direction control of the polar flagellar motor
      Takekawa N, Nishikino T, Hori K, Kojima S, Imada K, Homma M.
      Genes Cells.. 2021 Sep 6. doi: 10.1111/gtc.12895. Online ahead of print.PMID: 34487583PubMed
    • A slight bending of an α-helix in FliM creates a counterclockwise-locked structure of the flagellar motor in Vibrio
      Takekawa N, Nishikino T, Yamashita T, Hori K, Onoue Y, Ihara K, Kojima S, Homma M, Imada K.
      J Biochem. . 2021 Jun 18:mvab074. doi: 10.1093/jb/mvab074. Online ahead of print.PMID: 34143212PubMed
    • Putative Spanner Function of the Vibrio PomB Plug Region in the Stator Rotation Model for Flagellar Motor
      Homma M, Terashima H, Koiwa H, Kojima S.
      J Bacteriol. . 2021 Jul 22;203(16):e0015921. doi: 10.1128/JB.00159-21. Epub 2021 Jul 22.PMID: 34096782PubMed
    • Two Distinct Conformations in 34 FliF Subunits Generate Three Different Symmetries within the Flagellar MS-Ring
      Takekawa N, Kawamoto A, Sakuma M, Kato T, Kojima S, Kinoshita M, Minamino T, Namba K, Homma M, Imada K.
      mBio. . 2021 Mar 2;12(2):e03199-20. doi: 10.1128/mBio.03199-20. PMID:33653894PubMed
    • Site-directed crosslinking identifies the stator-rotor interaction surfaces in a hybrid bacterial flagellar motor.
      Terashima H, Kojima S, Homma M.
      J Bacteriol. . 2021 Feb 22:JB.00016-21. doi: 10.1128/JB.00016-21. Online ahead of print. PMID:33619152PubMed
    • Role of the N- and C-terminal regions of FliF, the MS ring component in Vibrio flagellar basal body.
      Kojima S, Kajino H, Hirano K, Inoue Y, Terashima H, Homma M.
      J Bacteriol. . 2021 Feb 22:JB.00009-21. doi: 10.1128/JB.00009-21. Online ahead of print. PMID:33619151PubMed

    2020

    • The flagellar motor of Vibrio alginolyticus undergoes major structural remodeling during rotational switching.
      Carroll BL, Nishikino T, Guo W, Zhu S, Kojima S, Homma M, Liu J.
      eLife.. 2020 Sep 7;9:e61446. doi: 10.7554/eLife.61446. PMID: 32893817PubMed
    • Live-cell fluorescence imaging reveals dynamic production and loss of bacterial flagella.
      Zhuang XY, Guo S, Li Z, Zhao Z, Kojima S, Homma M, Wang P, Lo CJ, Bai F.
      Mol Microbiol. . 2020 Aug;114(2):279-291. doi: 10.1111/mmi.14511. Epub 2020 May 2. PMID: 32259388PubMed
    • Assembly mechanism of a supramolecular MS-ring complex to initiate bacterial flagellar biogenesis in Vibrio species.
      Terashima H, Hirano K, Inoue Y, Tokano T, Kawamoto A, Kato T, Yamaguchi E, Namba K, Uchihashi T, Kojima S, Homma M.
      J Bacteriol. . 2020 Jun 1:JB.00236-20. doi: 10.1128/JB.00236-20. Online ahead of print. PMID: 32482724PubMed
    • Regulation of the Single Polar Flagellar Biogenesis.
      Kojima S, Terashima H, Homma M.
      Biomolecules. . 2020 Apr 1;10(4):533. doi: 10.3390/biom10040533. PMID: 32244780PubMed
    • *Characterization of the MinD/ParA-type ATPase FlhG in Vibrio alginolyticus and implications for function of its monomeric form.
      Kojima S, Imura Y, Hirata H, Homma M.
      Genes Cells. 2020 Feb 3. doi: 10.1111/gtc.12754.PubMed
    • Tree of motility - A proposed history of motility systems in the tree of life.
      Miyata M, Robinson RC, Uyeda TQP, Fukumori Y, Fukushima SI, Haruta S, Homma M, Inaba K, Ito M, Kaito C, Kato K, Kenri T, Kinosita Y, Kojima S, Minamino T, Mori H, Nakamura S, Nakane D, Nakayama K, Nishiyama M, Shibata S, Shimabukuro K, Tamakoshi M, Taoka A, Tashiro Y, Tulum I, Wada H, Wakabayashi KI.
      Genes Cells. 2020 Jan;25(1):6-21. doi: 10.1111/gtc.12737.PubMed
    • Characterization of FliL Proteins in Bradyrhizobium diazoefficiens: Lateral FliL Supports Swimming Motility, and Subpolar FliL Modulates the Lateral Flagellar System.
      Mengucci F, Dardis C, Mongiardini EJ, Althabegoiti MJ, Partridge JD, Kojima S, Homma M, Quelas JI, Lodeiro AR.
      J Bacteriol. 2020 Feb 11;202(5). pii: e00708-19. doi: 10.1128/JB.00708-19.PubMed
    • Characterization of PomA periplasmic loop and sodium ion entering in stator complex of sodium-driven flagellar motor.
      Nishikino T, Iwatsuki H, Mino T, Kojima S, Homma M.
      J. Biochem. 2020 Apr 1;167(4):389-398. pii: mvz102. doi: 10.1093/jb/mvz102. PubMed
    • In situ structure of the Vibrio polar flagellum reveals distinct outer membrane complex and its specific interaction with the stator.
      Zhu S, Nishikino T, Takekawa N, Terashima H, Kojima S, Imada K, Homma M, Liu J
      J Bacteriol. 2020 Jan 29;202(4). pii: e00592-19. doi: 10.1128/JB.00592-19. PubMed

    2019

    • Structure of the periplasmic domain of SflA involved in spatial regulation of the flagellar biogenesis of Vibrio reveals a TPR/SLR-like fold.
      Sakuma M, Nishikawa S, Inaba S, Nishigaki T, Kojima S, Homma M, Imada K.
      J. Biochem. 2019 Aug 1;166(2):197-204. doi: 10.1093/jb/mvz027. PubMed
    • Effect of sodium ions on conformations of the cytoplasmic loop of the PomA stator protein of Vibrio alginolyticus.
      Mino T, Nishikino T, Iwatsuki H, Kojima S, Homma M.
      J. Biochem. 2019 May 30. pii: mvz040. doi: 10.1093/jb/mvz040. PubMed
    • Structure of Vibrio FliL, a New Stomatin-like Protein That Assists the Bacterial Flagellar Motor Function.
      Takekawa N, Isumi M, Terashima H, Zhu S, Nishino Y, Sakuma M, Kojima S, Homma M, Imada K.
      MBio. 2019 Mar 19;10(2). pii: e00292-19. doi: 10.1128/mBio.00292-19.PubMed
    • *Effect of PlzD, a YcgR homolog of c-di-GMP binding protein, on polar flagellar motility in Vibrio alginolyticus.
      Kojima S, Yoneda T, Morimoto W, Homma M.
      J Biochem. 2019 Feb 18. doi: 10.1093/jb/mvz014.PubMed
     

    2018

    • Rotational direction of flagellar motor from the conformation of FliG middle domain in marine Vibrio.
      Nishikino T, Hijikata A, Miyanoiri Y, Onoue Y, Kojima S, Shirai T, Homma M.
      Sci Rep. 2018 Dec 12;8(1):17793. doi: 10.1038/s41598-018-35902-6.PubMed
    • Biochemical analysis of GTPase FlhF which controls the number and position of flagellar formation in marine Vibrio.
      Kondo S, Imura Y, Mizuno A, Homma M, Kojima S.
      Sci Rep. 2018 Aug 14;8(1):12115. doi: 10.1038/s41598-018-30531-5.PubMed
    • The Vibrio H-ring facilitates the outer membrane penetration of polar-sheathed flagellum.
      Zhu S, Nishikino T, Kojima S, Homma M, Liu J.
      J Bacteriol. 2018 Aug 13. pii: JB.00387-18. doi: 10.1128/JB.00387-18. [Epub ahead of print]PubMed
    • FliL association with flagellar stator in the sodium-driven Vibrio motor characterized by the fluorescent microscopy.
      Lin TS, Zhu S, Kojima S, Homma M, Lo CJ.
      Sci Rep. 2018 Jul 24;8(1):11172. doi: 10.1038/s41598-018-29447-x. PubMed
    • The role of conserved charged residues in the bidirectional rotation of the bacterial flagellar motor.
      Onoue Y, Takekawa N, Nishikino T, Kojima S, Homma M.
      MicrobiologyOpen e587. (2018) doi: 10.1002/mbo3.587. PubMed
    • *The helix rearrangement in the periplasmic domain of the flagellar stator B subunit activates peptidoglycan binding and ion influx.
      Kojima S, Takao M, Almira G, Kawahara I, Sakuma M, Homma M, Kojima C, Imada K.
      Structure 26, 590-598.(2018) PubMed
    • Solution structure analysis of the periplasmic region of bacterial flagellar motor stators by small angle X-ray scattering.
      Liew C.W, Hynson R.M, Ganuelas L.A, Shah-Mohammadi N, Duff A.P, Kojima S, Homma M, Lee L.K.
      Biochem Biophys Res Commun. 495, 1614-1619. (2018) PubMed

    2017

    • Analysis of the GTPase motif of FlhF in the control of the number and location of polar flagella in Vibrio alginolyticus.
      Kondo S, Homma M, Kojima S.
      Biophysics and Physicobiology 14, 173-181. (2017)PubMed
    • Application of Environmental Scanning Electron Microscope-Nanomanipulation System on Spheroplast Yeast Cells Surface Observation.
      Rad MA, Ahmad MR, Nakajima M, Kojima S, Homma M, Fukuda T.
      Scanning 2017 Apr 27;2017:8393578. doi: 10.1155/2017/8393578.PubMed
    • Molecular architecture of the sheathed polar flagellum in Vibrio alginolyticus.
      Zhu S, Nishikino T, Hu B, Kojima S, Homma M, Liu J.
      Proc Natl Acad Sci U S A. 114, 10966-10971. (2017)PubMed
    • Structural and functional analysis of the C-terminal region of FliG, an essential motor component of Vibrio Na+-driven flagella.
      Miyanoiri Y, Hijikata A, Nishino Y, Gohara M, Onoue Y, Kojima S, Kojima C, Shirai T, Kainosho M, Homma M.
      Structure 25, 1-9. (2017) PubMed
    • Mechanism of stator assembly and incorporation into the flagellar motor.
      Kojima S.
      Methods Mol. Biol. 1593, 147-159. (2017) doi: 10.1007/978-1-4939-6927-2_11. PubMed
    • Localization and domain characterization of the SflA regulator of flagellar formation in Vibrio alginolyticus.
      Inaba S, Nishigaki T, Takekawa N, Kojima S, Homma M.
      Genes Cells 7, 619-627. (2017) PubMed
    • Biochemical characterization of the flagellar stator-associated inner membrane protein FliL from Vibrio alginolyticus.
      Kumar A, Isumi M, Sakuma M, Zhu S, Nishino Y, Onoue Y, Kojima S, Miyanoiri Y, Imada K, Homma M.
      J. Biochem. 161, 331-337. (2017) PubMed
    • Mutational analysis and overproduction effects of MotX, an essential component for motor function of Na+-driven polar flagella of Vibrio.
      Takekawa N, Kojima S, Homma M.
      J. Biochem. 161, 159-166. (2017) PubMed

    2016

    • *Studies on the mechanism of bacterial flagellar rotation and the flagellar number regulation.
      Kojima S.
      Nihon Saikingaku Zasshi. 71, 185-197. (2016) PubMed 平成28年小林六造記念賞受賞論文
    • HubP, a polar landmark protein, regulates flagellar number by assisting in the proper polar localization of FlhG in Vibrio alginolyticus.
      Takekawa N, Kwon S, Nishioka N, Kojima S, Homma M.
      J. Bacteriol.198, 3091-3098. (2016) PubMed
    • The tetrameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium.
      Takekawa N, Terahara N, Kato T, Gohara M, Mayanagi K, Hijikata A, Onoue Y, Kojima S, Shirai T, Namba K, Homma M.
      Sci. Rep. 6, 31526. (2016) doi: 10.1038/srep31526. PubMed
    • Serine suppresses the motor function of a periplasmic PomB mutation in the Vibrio flagella stator.
      Nishikino T1, Zhu S, Takekawa N, Kojima S, Onoue Y, Homma M
      Genes Cells. 21, 505-516.(2016) doi: 10.1111/gtc.12357. PubMed
    • FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella.
      Minamino T, Kinoshita M, Inoue Y, Morimoto YV , Ihara K, Koya S, Hara N, Nishioka N, Kojima S, Homma M & Namba K
      Microbiologyopen 5, 424-435. (2016) doi:10.1002/mbo3.340 PubMed
    •  

    2015

    • *Dynamism and regulation of the stator, the energy conversion complex of the bacterial flagellar motor.
      Kojima S.
      Curr. Opin. Microbiol. 28, 66-71. (2015) PubMed
    • Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria.
      Ishii E, Chiba S, Hashimoto N, Kojima S, Homma M, Ito K, Akiyama Y, Mori H
      Proc Natl Acad Sci U S A . 112(40):E5513-22 (2015) PubMed
    •  
    • Sodium-driven energy conversion for flagellar rotation of the earliest divergent hyperthermophilic bacterium..
      Takekawa N, Nishiyama M, Kaneseki T, Kanai T, Atomi H, Kojima S, Homma M
      Sci Rep. 5:12711. (2015) doi: 10.1038/srep12711 PubMed
    •      
    • Effect of FliG three-amino-acids deletion in Vibrio polar-flagellar rotation and formation.
      Onoue Y, Kojima S, Homma M.
      J Biochem. 158, 523-529. (2015) PubMed
    •      
    • *The MinD homolog FlhG regulates the synthesis of the single polar flagellum of Vibrio alginolyticus.
      Ono H, Takashima A, Hirata H, Homma M, Kojima S.
      Mol Microbiol. 98, 130-141. (2015) doi: 10.1111/mmi.13109. PubMed
    •      
    • FliL associates with the stator to support torque generation of the sodium-driven polar flagellar motor of Vibrio.
      Zhu S, Kumar A, Kojima S, Homma M.
      Mol Microbiol. 98, 101-110 (2015) doi: 10.1111/mmi.13103.PubMed
    • Functional chimeras of flagellar stator proteins between E. coli MotB and Vibrio PomB at the periplasmic region in Vibrio or E. coli.
      Nishino Y, Onoue Y, Kojima S, Homma M.
      Microbiologyopen. 4, 323−331. (2015) PubMed
    • *Interaction of the C-terminal tail of FliF with FliG from the Na+-driven flagellar motor of Vibrio alginolyticus.
      Ogawa R, Abe-Yoshizumi R, Kishi T, Homma M and Kojima S.
      J Bacteriol. 197. 63-72. (2015)PubMed

    2014

    • *Conformational change in the periplamic region of the flagellar stator coupled with the assembly around the rotor.
      Zhu S, Takao M, Li N, Sakuma M, Nishino Y, Homma M, Kojima S and Imada K.
      Proc Natl Acad Sci USA. 111, 13523-13528 (2014) PubMed
    • Contribution of many charged residues at the stator-rotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus.
      Takekawa N, Kojima S and Homma M.
      J Bacteriol. 196, 1377-1385.(2014) PubMed
    • Construction of functional fragments of the cytoplasmic loop with the C-terminal region of PomA, a stator component of the Vibrio Na+ driven flagellar motor
      Onoue Y, Abe-Yoshizumi R, Gohara M, Kobayashi S, Nishioka N, Kojima S and Homma M.
      J Biochem. 155, 207-216. (2014) PubMed

    2013

    • Structure, gene regulation and environmental response of flagella in Vibrio
      Zhu S, Kojima S and Homma M.
      Front. Microbiol. 4, 410. (2013) PubMed
    • Biophysical characterization of the C-terminal region of FliG, an essential rotor component of the Na+ driven flagellar motor
      Gohara M, Kobayashi S, Abe-Yoshizumi R, Nonoyama N, Kojima S, Asami Y and Homma M.
      J Biochem. , 155, 83-89. (2014) PubMed
    • Mutation in the a-subunit of F1FO-ATPase causes an increased motility phenotype through the sodium-driven flagella of Vibrio
      Terashima H, Terauchi T, Ihara K, Nishioka N, Kojima S and Homma M.
      J Biochem. 154, 177-84. (2013) PubMed
    • Insight into the assembly mechanism in the supramolecular rings of the sodium-driven Vibrio flagellar motor from the structure of FlgT.
      Terashima H, Li N, Sakuma M, Koike M, Kojima S, Homma M and Imada K.
      Proc Natl Acad Sci USA, 110, 6133-6138. (2013) PubMed
    • Fluorescence imaging of GFP-fused periplasmic components of Na+-driven flagellar motor using Tat pathway in Vibrio alginolyticus.
      Takekawa N, Kojima S and Homma M.
      J Biochem. 153, 547-553. (2013) PubMed
    • Expression, purification and biochemical characterization of the cytoplasmic loop of PomA, a stator component of the Na+ driven flagellar motor
      Abe-Yoshizumi R, Kobayashi S, Gohara M, Hayashi K, Kojima C, Kojima S, Sudo Y, Asami Y and Homma M.
      Biophysics 9, 21-29. (2013) PubMed
    • Na+ conductivity of the Na+-driven flagellar motor complex composed of unplugged wild-type or mutant PomB with PomA.
      Takekawa N, Terauchi T, Morimoto YV, Minamino T, Lo CJ, Kojima S and Homma M.
      J Biochem. 153, 441-451. (2013) PubMed
    • A Novel dnaJ Family Gene, sflA, Encodes an Inhibitor of Flagellation in Marine Vibrio Species
      Kitaoka M, Nishigaki T, Ihara K, Nishioka N, Kojima S and Homma M.
      J. Bacteriol. 195, 816-822. (2013) PubMed

    2012

    • *Intragenic suppressor of a plug deletion nonmotility mutation in PotB, a chimeric stator protein of sodium-driven flagella.
      Zhu S, Homma M and Kojima S.
      J. Bacteriol. 194, 6728-6735. (2012) PubMed
    • Bacterial Motility Measured by a Miniature Chamber for High-Pressure Microscopy
      Nishiyama M and Kojima S.
      Int. J. Mol. Sci. 13, 9225-9239. (2012). PubMed
    • Characterization of PomA mutants defective in the functional assembly of the Na+ -driven flagellar motor in Vibrio alginolyticus
      Takekawa N, Li N, Kojima S and Homma M.
      J. Bacteriol. 194, 1934-1939. (2012). PubMed
    • Nanofork for Single Cells Adhesion Measurement via ESEM-Nanomanipulator System.
      Ahmad MR, Nakajima M, Kojima M, Kojima S, Homma M and Fukuda T.
      IEEE Trans Nanobioscience. 11, 70-8. (2012). PubMed

    2011

    • Evaluation of the single yeast cell's adhesion to ITO substrates with various surface energies via ESEM nanorobotic manipulation system.
      Shen Y, Ahmad MR, Nakajima M, Kojima S, Homma M and Fukuda T.
      IEEE Trans Nanobioscience. 10, 217-224. (2011) PubMed
    • *Mutations targeting the C-terminal domain of FliG can disrupt motor assembly in the Na+-driven flagella of Vibrio alginolyticus.
      Kojima S, Nonoyama N, Takekawa N, Fukuoka H and Homma M.
      J Mol Biol. , 414, 62-74. (2011) PubMed
    • M153R mutation in a pH-sensitive green fluorescent protein stabilizes its fusion proteins.
      Morimoto YV, Kojima S, Namba K and Minamino T.
      PLoS One. May 3;6(5), e19598 (2011) PubMed
    • Sodium-driven motor of the polar flagellum in marine bacteria Vibrio.
      Li N, Kojima S, & Homma M.
      Genes Cells. 16(10):985-99(2011). PubMed
    • Effect of ambient humidity on the strength of the adhesion force of single yeast cell inside environmental-SEM.
      Shen Y, Nakajima M, Ahmad MR, Kojima S, Homma M and Fukuda T.
      Ultramicroscopy. 111, 1176-1183. (2011) PubMed
    • Design and characterization of nanoknife with buffering beam for in situ single-cell cutting.
      Shen Y, Nakajima M, Yang Z, Kojima S, Homma M and Fukuda T.
      Nanotechnology 22, 305701. (2011) PubMed
    • A conserved residue, PomB-F22, in the transmembrane segment of the flagellar stator complex, has a critical role in conducting ions and generating torque.
      Terauchi T, Terashima H, Kojima S and Homma M.
      Microbiology. 157, 2422-2432. (2011). PubMed
    • *Characterization of the periplasmic region of PomB, a Na+-driven flagellar stator protein in Vibrio alginolyticus.
      Li N, Kojima S and Homma M.
      J Bacteriol. 193, 3773-3784. (2011) PubMed
    • Study of the time effect on the strength of cell-cell adhesion force by a novel nano-picker.
      Shen Y, Nakajima M, Kojima S, Homma M and Fukuda T.
      Biochem Biophys Res Commun. 409, 160-165. (2011)PubMed

    2010

    • The flagellar basal body-associated protein FlgT is essential for a novel ring structure in the sodium-driven Vibrio motor.
      Terashima H, Koike M, Kojima S and Homma M.
      J. Bacteriol. 192, 5609-5615. (2010) PubMed
    • Disulphide cross-linking between the stator and the bearing components in the bacterial flagellar motor.
      Hizukuri Y, Kojima S and Homma M.
      J Biochem. 148, 309-318. (2010) PubMed
    • Functional transfer of an essential aspartate for the ion binding site in the stator proteins of the bacterial flagellar motor.
      Terashima H, Kojima S and Homma M.
      J. Mol. Biol. 397, 689-696. (2010) PubMed
    • Nanoindentation methods to measure viscoelastic properties of single cells using sharp, flat, and buckling tips inside ESEM.
      Ahmad MR, Nakajima M, Kojima S, Homma M, Fukuda T.
      IEEE Trans Nanobioscience. 9, 12-23. (2010) PubMed
    • Isolation of basal bodies with C-ring components from the Na+-driven flagellar motor of Vibrio alginolyticus.
      Koike M, Terashima H, Kojima S and Homma M.
      J. Bacteriol. 192, 375-378. (2010) PubMed

    2009

    • Comparative study of the ion flux pathway in stator units of proton- and sodium-driven flagellar motors.
      Sudo Y, Terashima H, Abe-Yoshizumi R, Kojima S and Homma M.
      Biophysics 5, 45-52. (2009) PubMed
    • Interaction between Na+ ion and carboxylates of the PomA-PomB stator unit studied by ATR-FTIR spectroscopy.
      Sudo Y, Kitade Y, Furutani Y, Kojima M, Kojima S, Homma M and Kandori H.
      Biochemistry 48, 11699-11705. (2009) >PubMed
    • Rotational speed control of Na+-driven flagellar motor by dual pipettes.
      Nogawa K, Kojima M, Nakajima M, Kojima S, Homma M and Fukuda T.
      IEEE Trans Nanobioscience 8, 341-348. (2009) PubMed
    • Mutational analysis of the GTP-binding motif of FlhF which regulates the number and placement of the polar flagellum in Vibrio alginolyticus.
      Kusumoto A, Nishioka N, Kojima S and Homma M.
      J. Biochem. 146, 643-650. (2009) PubMed
    • Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB.
      Kojima S, Imada K, Sakuma M, Sudo Y, Kojima C, Minamino T, Homma M and Namba K.
      Mol. Microbiol. 73, 710-718. (2009) PubMed
    • The peptidoglycan-binding (PGB) domain of the Escherichia coli pal protein can also function as the PGB domain in E. coli flagellar motor protein MotB.
      Hizukuri Y, Morton JF, Yakushi T, Kojima S and Homma M.
      J. Biochem. 146, 219-229. (2009) PubMed
    • Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors.
      Fukuoka H, Wada T, Kojima S, Ishijima A and Homma M.
      Mol. Microbiol. 71, 825-835. (2009) pdf

    2008

    • Cell-free synthesis of the torque-generating membrane proteins, PomA and PomB, of the Na+-driven flagellar motor in Vibrio alginolyticus.
      Terashima H, Abe-Yoshizumi R, Kojima S and Homma M.
      J. Biochem. 144, 635-642. (2008) pdf
    • Suppressor analysis of the MotB(D33E) mutation to probe bacterial flagellar motor dynamics coupled with proton translocation.
      Che YS, Nakamura S, Kojima S, Kami-ike N, Namba K and Minamino T.
      J. Bacteriol. 190, 6660-6667.(2008) PubMed
    • The Effects of Cell Sizes, Environmental Conditions, and Growth Phases on the Strength of Individual W303 Yeast Cells Inside ESEM.
      Ahmad MR, Nakajima M, Kojima S, Homma M and Fukuda T.
      IEEE Transactions on Nanobioscience 7, 185-193. (2008) pdf
    • Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY.
      Kojima S, Shinohara A, Terashima H, Yakushi T, Sakuma M, Homma M, Namba K and Imada K.
      Proc. Nat.l Acad. Sci. U S A. 105, 7696-7701. (2008) pdf
    • *Characterization of the periplasmic domain of MotB and implications for its role in the stator assembly of the bacterial flagellar motor.
      Kojima S, Furukawa Y, Matsunami H, Minamino T and Namba K.
      J. Bacteriol. 190, 3314-3322. (2008) PubMed
    • Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus.
      Kusumoto A, Shinohara A, Terashima H, Kojima S, Yakushi T and Homma M.
      Microbiology 154, 1390-1399. (2008) pdf
    • Roles of charged residues in the C-terminal region of PomA, a stator component of the Na+-driven flagellar motor.
      Obara M, Yakushi T, Kojima S and Homma M.
      J. Bacteriol. 190, 3565-3571. (2008) pdf
    • Systematic Cys mutagenesis of Flgl, the flagellar P-ring component of Escherichia coli.
      Hizukuri Y, Kojima S, Yakushi T, Kawagishi I and Homma M.
      Microbiology. 154, 810-817.(2008) pdf

    2007

    • Visualization of functional rotor proteins of the bacterial flagellar motor in the cell membrane.
      Fukuoka H, Sowa Y, Kojima S, Ishijima A and Homma M.
      J. Mol. Biol. 367, 692-701. (2007) pdf
    • Crystallization and preliminary X-ray analysis of MotY, a stator component of the Vibrio alginolyticus polar flagellar motor.
      Shinohara A, Sakuma M, Yakushi T, Kojima S, Namba K, Homma M and Imada K.
      Acta. Cryst. 63, 89-92. (2007) pdf

    2006

    • The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+-driven flagella and required for stator formation.
      Terashima H, Fukuoka H, Yakushi T, Kojima S and Homma M.
      Mol. Micro. 62, 1170-1180. (2006) pdf

    2004

    • Solubilization and purification of the MotA/MotB complex of Escherichia coli.
      Kojima S and Blair DF.
      Biochemistry 43, 26-34. (2004) PubMed
    • Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli
      Braun TF, Al-Mawsawi LQ, Kojima S and Blair DF.
      Biochemistry 43, 35-45. (2004) PubMed

    2001

    • Conformational change in the stator of the bacterial flagellar motor.
      Kojima S and Blair DF.
      Biochemistry 40, 13041-13050. (2001) PubMed

    2000

    • A slow-motilty phenotype caused by substitutions at residue Asp31 in the PomA channel component of a sodium-driven flagellar motor.
      Kojima S, Shoji T, Asai Y, Kawagishi I and Homma M.
      J. Bacteriol. 182, 3314-3318. (2000) pdf

    1999

    • Random mutagenesis of the pomA gene encoding a putative channel component of the Na+-driven polar flagellar motor of Vibrio alginolyticus.
      Kojima S, Kuroda M, Kawagishi I and Homma M
      Microbiology 145, 1759-1767. (1999) pdf
    • The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force.
      Kojima S, Yamamoto K, Kawagishi I, Homma M.
      J. Bacteriol. 181, 1927-1930. (1999) PubMed
    • Na+-driven flagellar motor resistant to phenamil, an amiloride analog, caused by mutations in putative channel components.
      Kojima S, Asai Y, Atsumi T, Kawagishi I and Homma M.
      J. Mol. Biol. 285, 1537-1547. (1999) pdf

    1997

    • Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium.
      Asai Y, Kojima S, Kato H, Nishioka N, Kawagishi I and Homma M.
      J. Bacteriol. 179, 5104-5110. (1997) pdf
    • Vibrio alginolyticus mutants resistant to phenamil, a specific inhibitor of the sodium-driven flagellar motor.
      Kojima S, Atsumi T, Muramoto K, Kudo S, Kawagishi I and Homma M.
      J. Mol. Biol. 265, 310-318. (1997) pdf

    1996

    • Chemotactic responses to an attractant and a repellent by the polar and lateral flagellar systems of Vibrio alginolyticus.
      Homma M, Oota H, Kojima S, Kawagishi I and Imae Y.
      Microbiology 142, 2777-2783. (1996) PubMed

    招待講演

    • Seiji Kojima “Regulation of the polar flagellar number and placement in marine bacterium Vibrio alginolyticus” International meeting of the Microbiological Society of Korea, BEXCO, Busan, Korea, April 27, 2017.
    • 小嶋誠司「エネルギー変換タンパク質の構造と機能」第90回 日本細菌学会総会 シンポジウムS19「構造解析から明らかにされる細菌タンパク質機能」 仙台市 2017年3月21日
    • Seiji Kojima “How to anchor and activate flagellar stator units: assembly-coupled stator activation mechanism revealed by the crystal structure and solution structures of the stator fragment” Bacterial flagella, Injectisomes & Type III secretion systems meeting, Okinawa Institute of Science and Technology, Okinawa, March 3, 2017.
    • 小嶋誠司 「細菌べん毛の回転および本数制御機構に関する研究」 北里研究所平成28年度第26回学会賞受賞者特別講演会 東京都港区 2017年1月30日
    • 小嶋誠司 「イオン駆動型回転モーターにおけるエネルギー変換マシナリーの分子解剖:細菌べん毛モーター固定子の機能と構造」 日本生物物理学会第54回年会 シンポジウム「運動超分子マシナリーが織りなす調和と多様性」 つくば市 2016年11月27日
    • 小嶋誠司「化学-力学エネルギー変換を担う膜タンパク分子「細菌べん毛モーター固定子」の作動原理解明に向けて 第89回 日本生化学会大会 シンポジウム2S14「膜タンパク分子作動原理解明の新機軸」 仙台市 2016年9月26日
    • 小嶋誠司「細菌べん毛モータートルク発生ユニットの動的制御機構」第89回 日本細菌学会総会 シンポジウムS3「細菌の運動」 大阪市 2016年3月23日
    • 小嶋誠司「集合に共役した細菌べん毛モーター固定子ユニットの活性化機構」日本生物物理学会第53回年会 シンポジウム「輸送膜蛋白質のダイナミズム」 金沢市 2015年9月15日
    • 小嶋誠司「細菌の運動器官「べん毛」の機能発現」 第1209回 京都大学ウイルス研究所セミナー 京都市 2015年7月3日
    •  
    • 小嶋誠司「細菌はどのようにして泳ぐのか? 〜生体回転モーターの不思議〜」新学術領域「分子ロボティクス」6月定例研究会「生き物に学ぶ」 名古屋市 2014年6月9日 招待講演
    • Seiji Kojima “Assembly-coupled activation mechanism of the Na+-driven stator complex” Gordon Research Conference (Sensory Transduction in Microorganisms), Ventura, California, January 14, 2014 (Invited talk).
    • 小嶋誠司「細菌べん毛から切り開く生命の基本原理」 上智大学セミナー 東京都 2014年1月11日
    • 小嶋誠司 「細菌べん毛の構築と機能を制御するしくみ」 日本細菌学会第86回総会 ワークショップ「細菌構造研究の新展開:分泌装置、細胞骨格、運動装置、細菌表層の構造体を中心に」2013年3月19日
    • 小嶋誠司 「細菌べん毛マシナリー:機能的固定子複合体の集合と活性化」 日本生化学会第85回大会 シンポジウム「運動超分子マシナリーの機能メカニズム」2012年12月15日
    • 小嶋誠司 「バクテリアのイオン駆動力による運動機構」 日本動物学会第82回大会 シンポジウム「動物細胞の移動のメカニズム-単細胞・多細胞・二次元・三次元-」2012年9月23日
    • Seiji Kojima “Towards the understanding of the mechanism of Na+-driven flagellar motor of Vibrio alginolyticus.” Seminar at Newcastle University, United Kingdom, October 14, 2010.
    • Seiji Kojima “Dynamic assembly and activation of the stator complex in the bacterial flagellar motor.” At ZMBH seminar, University of Heidelberg, Germany, June 25, 2010.
    • Seiji Kojima “Cell-free synthesis of the torque generating bacterial flagellar motor proteins” BIT Life Sciences’ 3rd Annual Protein and Peptide Conference (PepCon-2010). Beijing, China, March 22, 2010.
    • 小嶋誠司 「細菌の泳ぐしくみ:細菌べん毛モーターの回転機構の解析」 岡山大学異分野融合先端研究コア 2009年11月27日
    • Seiji Kojima “Assembly and structure of the stator complex in the bacterial flagellar motor.” Seminar at National Autonomous University of Mexico. January 23, 2009.
    • Seiji Kojima “The story of the bacterial flagellar stators: Assembly, Structure and Biochemical properties”. Seminar at Manchester Interdisciplinary Biocentre, University of Manchester. July 17, 2007.
    • 小嶋誠司 「膜に埋まった超分子複合体“細菌べん毛モーター”の挙動を追う」 日本分子生物学会2006フォーラム シンポジウム「膜タンパク質の挙動/構造変化を追う」 2006年12月8日
    • 小嶋誠司 「プロトン駆動型べん毛モーターの回転機構:固定子MotA/MotB複合体中をプロトンはどのように流れるのか?」 第28回日本分子生物学会年会 シンポジウム 2005年12月10日

    総説

    • Autonomous control mechanism of stator assembly in the bacterial flagellar motor in response to changes in the environment.
      Minamino T, Terahara N, Kojima S, Namba K.
      Mol Microbiol. 109(6):723-734. (2018). PubMed
    • 少数で製造を制御する
      今田勝巳、小嶋誠司
      実験医学 (2017) 35, 3218-3223
    • *Mechanism of stator assembly and incorporation into the flagellar motor.
      Kojima S.
      Methods Mol. Biol. (2017) 1593, 147-159.
    • *少数を決める
      小嶋誠司 永井健治・冨樫祐一編
      「少数性生物学」第14章、日本評論社 (2017) 119-127
    • *Studies on the mechanism of bacterial flagellar rotation and the flagellar number regulation.
      Kojima S.
      Nihon Saikingaku Zasshi. (2016) 71, 185-197. 平成28年小林六造記念賞受賞論文
    • *Dynamism and regulation of the stator, the energy conversion complex of the bacterial flagellar motor.
      Kojima S.
      Curr. Opin. Microbiol. (2015) 28, 66-71.
    • 細菌べん毛モーター固定子の組込みと活性化機構
      今田勝巳、小嶋誠司 
      日本結晶学雑誌 (2015) 57, 291-296. 査読なし
    • ペリプラズム側構造から見たべん毛モーター構築とモーターの活性化機構
      小嶋誠司、今田勝己
      生物物理(2012) 52, 18-21
    • 細菌べん毛モーターの回転メカニズム解明に向けて
      寺内尭史、小嶋誠司、本間道夫
      生化学(2011) 83巻9号 822-833
    • Sodium-driven motor of the polar flagellum in marine bacteria Vibrio.
      Li N, Kojima S and Homma M.
      Genes Cells. 16, 985-99. (2011). PubMed
    • Flagellar motility in bacteria: Structure and function of flagellar motor.
      Terashima H, Kojima S and Homma M.
      Int. Rev. Cell Mol. Biol. (2008) 270, 39-85
    • 細菌細胞のトポロジー:タンパク質極局在を中心に
      楠本晃子,小嶋誠司,本間道夫
      日本細菌学雑誌 61, 325-337.(2006)
    • The bacterial flagellar motor: Structure and function of a complex molecular machine.
      Kojima S, Blair DF.
      Int. Rev. Cytol., 233, 93-134.(2004). PubMed
    • バクテリアのNa+ 駆動型モーターとべん毛運動.
      小嶋誠司,川岸郁朗,本間道夫
      化学と生物 (1996) 34: 730-737.

    その他の出版物

    • Rotary motors (bacterial).
      Kojima S, Blair DF.
      McGraw-Hill Yearbook of Science & Technology 2003 , 363-366 (2003).
      The McGraw-Hill Companies, Inc. New York.
Copyright© Group of Biomembrane Functions. All rights reserved.